
Comprehensive Examination
Department of Physics and Astronomy

Stony Brook University

Spring 2025 (in 4 separate parts: CM, EM, QM, SM)

General Instructions:

Three problems are given. If you take this exam as a placement exam, you must work on all
three problems. If you take the exam as a qualifying exam, you must work on two problems
(if you work on all three problems, only the two problems with the highest scores will be
counted).

Each problem counts for 20 points, and the solution should typically take approximately one
hour.

Use one exam book for each problem, and label it carefully with the problem topic and
number and your ID number.

Write your ID number (not your name!) on each exam booklet.

You may use, one sheet (front and back side) of handwritten notes and, with the proc-
tor’s approval, a foreign-language dictionary. No other materials may be used.
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CLASSICAL MECHANICS 1

Double pendulum

A double pendulum consists of one pendulum attached to another. Consider a double pen-
dulum with masses m1 and m2 attached by rigid massless wires of length l1 = l2 = l. Let
ϕ1,2 denote the angles that each wire makes with the vertical, as shown in the figure. Let g
denote the acceleration due to gravity. The motion is in the plane shown and frictionless.

(a)[6pt] Derive the Lagrangian. Express your result in terms of l,m1,m2, g and ϕ1, ϕ2 and
their derivatives.

(b)[2pt] Determine the generalized momenta p1, p2 conjugate to ϕ1, ϕ2.

(c)[4pt] Determine the Euler-Lagrange equations of motion of ϕ1 and ϕ2.

(d)[6pt] Assume small oscillations, |ϕ1|, |ϕ2| ≪ 1. Determine the characteristic frequencies.

(e)[2pt] What are the limiting values of the frequencies in the case m1 ≫ m2? Interpret
your result physically.
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Solution

(a) The kinetic energy is given by:

K.E. =
1

2
m1

(
ẋ21 + ẏ21

)
+

1

2
m2

(
ẋ22 + ẏ22

)
(1)

From the figure,

x1 = l sinϕ1, y1 = −l cosϕ1, x2 = l(sinϕ1 + sinϕ2), y2 = −l(cosϕ1 + cosϕ2), (2)

which implies

ẋ1 = l cosϕ1ϕ̇1, ẏ1 = l sinϕ1ϕ̇1, x2 = l
(
cosϕ1ϕ̇1 + cosϕ2ϕ̇2

)
, y2 = l

(
sinϕ1ϕ̇1 + sinϕ2ϕ̇2

)
(3)

Thus, in terms of the angular variables, the kinetic energy becomes:

K.E. =
1

2
(m1 +m2) l

2ϕ̇2
1 +

1

2
m2l

2ϕ̇2
2 +m2l

2 cos(ϕ1 − ϕ2)ϕ̇1ϕ̇2 (4)

The potential energy in terms of the angular variables is:

P.E. = −gl cosϕ1(m1 +m2)− glm2 cosϕ2 (5)

Thus the Lagrangian is given by:

L =
1

2
(m1 +m2) l

2ϕ̇2
1 +

1

2
m2l

2ϕ̇2
2 +m2l

2 cos(ϕ1 − ϕ2)ϕ̇1ϕ̇2 + gl cosϕ1(m1 +m2) + glm2 cosϕ2

(6)

(b) The generalized momenta are given by:

p1 =
∂L
∂ϕ̇1

= (m1 +m2) l
2ϕ̇1 +m2l

2ϕ̇2 cos(ϕ1 − ϕ2) (7)

and

p2 =
∂L
∂ϕ̇2

= m2l
2ϕ̇2 +m2l

2ϕ̇1 cos(ϕ1 − ϕ2) (8)

(c) The Euler-Lagrange equations are given by:

d

dt

(
∂L
∂ϕ̇i

)
=
∂L
ϕi

(9)

Applied to ϕ1 this yields:

d

dt

(
(m1 +m2) l

2ϕ̇1 +m2l
2ϕ̇2 cos(ϕ1 − ϕ2)

)
= −m2l

2 sin(ϕ1 − ϕ2)ϕ̇1ϕ̇2 − gl sinϕ1(m1 +m2)

(10)
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Taking the derivative:

(m1 +m2)l
2ϕ̈1 +m2l

2ϕ̈2 cos(ϕ1 − ϕ2)−m2l
2ϕ̇2(ϕ̇1 − ϕ̇2) sin(ϕ1 − ϕ2)

= −m2l
2 sin(ϕ1 − ϕ2)ϕ̇1ϕ̇2 − gl sinϕ1(m1 +m2),

(11)

which simplifies to:

(m1 +m2) ϕ̈1 +m2ϕ̈2 cos(ϕ1 − ϕ2) +m2ϕ̇
2
2 sin(ϕ1 − ϕ2) = −g

l
sinϕ1(m1 +m2) (12)

Applying the Euler-Lagrange equation to ϕ2 yields:

d

dt

(
m2l

2ϕ̇2 +m2l
2ϕ̇1 cos(ϕ1 − ϕ2)

)
= m2l

2 sin(ϕ1 − ϕ2)ϕ̇1ϕ̇2 − glm2 sinϕ2 (13)

Taking the derivative:

m2l
2ϕ̈2 +m2l

2ϕ̈1 cos(ϕ1 − ϕ2)−m2l
2ϕ̇1

(
ϕ̇1 − ϕ̇2

)
sin(ϕ1 − ϕ2)

= m2l
2 sin(ϕ1 − ϕ2)ϕ̇1ϕ̇2 − glm2 sinϕ2,

(14)

which simplifies to

ϕ̈2 + ϕ̈1 cos(ϕ1 − ϕ2)− ϕ̇2
1 sin(ϕ1 − ϕ2) = −g

l
sinϕ2 (15)

(d) Expanding the Euler-Lagrange equations to order ϕ̈i yields:

(m1 +m2)ϕ̈1 +m2ϕ̈2 +
g

l
(m1 +m2)ϕ1 = 0

ϕ̈2 + ϕ̈1 +
g

l
ϕ2 = 0 (16)

These second order differential equations should have a solution of the form ϕi(t) = Ai cosωt.
Plugging into Eq. (16) yields the matrix equation:((

g
l
− ω2

)
(m1 +m2) −ω2m2

−ω2 −ω2 + g
l

)(
A1 cosωt

A2 cosωt

)
=

(
0

0

)
(17)

Solutions exist when the determinant of the matrix on the right-hand-side vanishes, i.e.,(g
l
− ω2

)2
(m1 +m2)− ω4m2 = 0 (18)

Combining terms:

ω4m1 − 2
g

l
ω2(m1 +m2) +

(g
l

)2
(m1 +m2) = 0, (19)
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which has solutions:

ω2
± =

1

m1

g

l

√
m1 +m2

(√
m1 +m2 ±

√
m2

)
(20)

(e) In the case m1 ≫ m2,

ω2
± → g

l
(21)

This corresponds to the mass m1 being fixed and m2 oscillating about m1 with the usual
frequency of a single pendulum, ω0 = g/l.
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CLASSICAL MECHANICS 2

Falling chain

A chain of length L and uniform mass per unit length ρ is
perfectly flexible and cannot stretch. Initially (t = 0), it is
lying at rest on a horizontal table, with a segment segment
of length λ (< L) hanging over the edge. In parts (a) and
(b), the horizontal part of the chain is aligned straight and
away (perpendicular) from the edge of the table, while in
part (c) it is piled up very close to the edge.

(a)[6pt] First, assume that there is no friction between the chain and the table. At time
t = 0, the chain is released and starts to slide off the table: its vertical segment y(t) increases
with time t > 0 while the horizontal segment slides towards the edge.

i. Using energy conservation, find a relationship between y, ẏ, L, g (free-fall acceleration)
and λ. Does it depend on ρ? why?

ii. Determine (in terms of L, g, and λ) the speed of the chain when y = L (i.e., when the
last segment of the chain has just left the horizontal surface).

iii. Obtain an equation of motion ÿ(t) = f(y) and, for y(t) ≤ L, show that the solution for
y(t) takes the form y(t) = λΦ(t). Determine the function Φ.

iv. How does the motion of the chain change when t >
√
L/g cosh−1(L/λ)? Sketch your

result for y(t) including both y < L and y ≥ L.

(b)[6pt] Now suppose that there is “viscous” friction force between the chain and the table
F = 2fLẏ, where f is a constant. Show that a general solution of the corresponding equation
of motion takes the form:

y(t) = e−st
[
W+Θ(t) +W−Θ(−t)

]
,

where s, W+ and W− are some constants. Find t function Θ and the constant s. Determine
the constants W± corresponding to the initial conditions of the problem.

(c)[8pt] Now suppose that the friction is absent but the horizontal segment (L− λ) of the
chain is compactly piled right on the edge of the table. The other segment λ < L hangs over
the edge as before, and the chain is released from rest at time t = 0.

i. Find the equation of motion for y(t). Hint: Balance the gravitational force with the rate
of change of the chain’s momentum.



ii. Show that in this case, the total mechanical (kinetic + potential) energy of the moving
chain) is not conserved, instead decreasing at a rate Cρ ẏ3 (determine the constant C).

iii. Explain qualitatively the physical origin of the energy dissipation above.



Solution

(a) The chain has length L and uniform mass per unit length ρ.

i. Initially, length (L − λ) lies on the table and length λ is hanging. At time t, length
(L−y(t)) lies on the table and length y(t) is hanging. Measure potential energies from a
reference height of the table top. Then, by conservation of energy applied initially (i.e.,
at time t = 0) and at time t:

1

2
ρL ẏ2 − ρ y g

1

2
y = −ρ λ g 1

2
λ .

Simplifying and rearranging, we obtain:

L ẏ2 = g ( y2 − λ2 ) .

ii. Thus, the speed when y = L is given by:

ẏ
∣∣
y=L

=
√
g L
√
1− (λ/L)2 .

The physical reason why ρ does feature in this result is the equivalence of inertial and
gravitational mass.

iii. Take the time-derivative of the energy conservation law, i.e.,
L ẏ2 = g(y2 −λ2) and cancel common factors to obtain the linear second-order ordinary
differential equation for y(t): L ÿ = g y.
Strategy #1: Solving this (linear, homogeneous) ordinary differential equation by the
hypothesis y(t) = exp rt (i.e., using the fact that the equation has constant coefficients),
and implementing the initial conditions (y(t), ẏ(t))

∣∣
t=0

= (λ, 0), one finds:

y(t) = λΦ(γt), with γ = +
√
g/λ and Φ(x) = cosh x .

Strategy #2: Separation of variables applied to the energy conservation law
L ẏ2 = g(y2 − λ2): ∫ y(t)

λ

dȳ√
ȳ2 − λ2

=

√
g

L

∫ t

0

dt̄ .

Apply the change of integration variable ȳ = λ cosh θ to obtain:

∫ cosh−1(y(t)/λ)

0

dθ =

√
g

L
t ,

or y(t) = λ cosh
(√

g/L t
)
.



FIG. 1. Part (a.iv) Graph of y versus t.

iv. For t >
√
L/g cosh−1(L/λ) we have y > L, so no chain segment remains on the table.

Then the whole chain remains vertical and continues to fall, starting from the speed
given as the answer to part (ii), but now with constant acceleration g.

(b) With friction the equation of motion becomes: ρL ÿ = ρ g y − 2f L ẏ . Independent
solutions of this (homogeneous, linear, constant-coefficient) ordinary differential equation
are obtained via the substitution y(t) = exp rt. This gives the general solution:

y(t) = e−tf/ρ
[
W+ e+t

√
(f/ρ)2+(g/L) +W− e−t

√
(f/ρ)2+(g/L)

]
,

where W+ and W− are constants of integration. Thus, Θ(x) = exp(x), s = (f/ρ) and
Σ = +

√
(f/ρ)2 + (g/L).

(c) Now the segment on the table is pooled up into a ball.

i. Balancing the rate of change of momentum with the force gives:

d

dt

[
(ρ y) ẏ

]
=
(
(ρ y) g

)
.

Thus, on canceling ρ, the equation of motion is found to be:

y ÿ + ẏ2 = g y .

ii. The rate of change of the energy E is given by:

dE

dt
=

d

dt

[
1

2
(ρ y) ẏ2 − (ρ y) g

1

2
y

]
.



Evaluating the time-derivative and applying the equation of motion gives:

dE

dt
= −1

2
ρ ẏ3, so C = 1/2 .

iii. Minus dE/dt, i.e., 1
2
(ρ ẏ) ẏ2, is the power needed to speed up the chain segments from

zero (their speed when in the ball) to the speed necessary to take part in the fall of the
chain.



CLASSICAL MECHANICS 3

Dumbbell pendulum

Two balls of mass m+ and m− are connected by massless rod of length ℓ. The center of
the connecting rod is suspended in the earth’s gravitational field to a pivot point P0 by an
additional rod of length D as shown below. The two rods can rotate without obstruction,
and angles θ and ϕ both will evolve in time. The masses m± are very nearly equal, with
m± = m± δm and δm≪ m
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(a)[6pt] Determine an approximate Lagrangian and action S[θ, ϕ] of the system to leading
order in δm.

Hint: Here and below it is useful to consider the center of mass and relative coordinates.

(b)[4pt] Determine the constants of motion for δm = 0 and δm ̸= 0. In each case identify
the symmetry associated with the conservation law.

(c)[4pt] Let θ(t) and ϕ(t) solve the equations of motion. If θ(t) and ϕ(t) are changed as
follows:

θ(t) →θ(t) + ϵ(t) (1)

ϕ(t) →ϕ(t) + ϵ(t) (2)



with ϵ(t) an arbitrary infinitessimal function, then what is the variation

δS ≡ S[θ + ϵ, ϕ+ ϵ]− S[θ, ϕ] . (3)

What does this specific variation imply for the time evolution of the system? Interpret the
result physically and discuss the limit of no gravity.

(d)[6pt] Consider the setup shown below, which is initially in stable equilibrium. At time
t = 0, a two strongly impulsive forces F±(t) = ±κ0δ(t) are applied to the balls (as shown
below), causing the connected balls to spin rapidly, i.e. spin with a typical frequency much
larger than

√
g/D.
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F�(t)

<latexit sha1_base64="voJltn3XqzQE79ZtKm6df1dFvBE=">AAACCnicbVDLSgMxFL3js9ZX1aWbYBEqQpkRqd1ZEMRlBfuAdiiZNNOGJjNDkhHK0D9w5Va/wp249Sf8CMFPMDPtwrYeCBzOuZdzc7yIM6Vt+8taWV1b39jMbeW3d3b39gsHh00VxpLQBgl5KNseVpSzgDY005y2I0mx8DhteaOb1G89UqlYGDzocURdgQcB8xnB2kjt215yPinps16haJftDGiZODNSvP6BDPVe4bvbD0ksaKAJx0p1HDvSboKlZoTTSb4bKxphMsID2jE0wIIqN8nunaBTo/SRH0rzAo0y9e9GgoVSY+GZSYH1UC16qfif14m1X3UTFkSxpgGZBvkxRzpE6edRn0lKNB8bgolk5lZEhlhiok1FcymeMNvIC3k/TcmbfpzFNpZJ86LsVMqV+8tirTotCnJwDCdQAgeuoAZ3UIcGEODwDC/waj1Zb9a79TEdXbFmO0cwB+vzF9P0mx8=</latexit>

F+(t)

libel=(i) Approximately determine ϕ(t) and θ(t), when δm = 0.

liibel=(ii) Perturbing the results of the previous item, determine the rapid oscillations of
θ(t) to first order in δm.



Solution

(a) The total mass is independent of δm

M = 2m. (4)

The reduced mass is unchanged to first order

µ =
m+m−

M
=

(m+ δm)(m− δm)

M
=
m

2
. (5)

A short calculation shows that the center of mass is shifted relative to the center point

∆x =
1

M
[(m+ δm)(ℓ/2)− (m− δm)(ℓ/2)] =

δmℓ

M
≡ αℓ , (6)

where α ≪ 1.

The (X, Y ) coordinates of the center of mass are

X =D sin θ + αℓ sinϕ , (7)

Y =−D cos θ − αℓ cosϕ . (8)

The relative coordinates r+ − r− are

rx = x+ − x− =ℓ sinϕ , (9)

ry = y+ − y− =− ℓ cosϕ . (10)

The velocities are

Ẋ =D cos θθ̇ + αℓ cosϕϕ̇ , (11)

Ẏ =D sin θθ̇ + αℓ sinϕϕ̇ , (12)

ṙx =ℓ cosϕϕ̇ , (13)

ṙy =ℓ sinϕϕ̇ . (14)

The kinetic energy of the center of mass is

Kcm =
1

2
M(Ẋ2 + Ẏ 2) , (15)

≃1

2
MD2θ̇2 +MDαℓ cos(θ − ϕ)ϕ̇θ̇ . (16)

The relative kinetic energy is

Krel =
1

2
µ

(
dr

dt

)2

=
1

2
µℓ2ϕ̇2 . (17)



Finally, we have to potential energy

U =MgY = −Mg(D cos θ + αℓ cosϕ) . (18)

So, the Lagrangian has the form

L =Kcm +Krel − U (19)

=
1

2
MD2θ̇2 +MDαℓ cos(θ − ϕ)ϕ̇θ̇ +

1

2
µℓ2ϕ̇2 +Mg(D cos θ + αℓ cosϕ) . (20)

(b) For δm ̸= 0 the only constants is the energy

h = Kcm +Krel + U . (21)

following from time translation symmetry. For the δm = 0, there is time translation sym-
metry leading to the conservation of energy. In addition the variation

ϕ→ ϕ+∆ϕ , (22)

is a symmetry of the action, since this shift does not displace the center of mass. This leads
to the conservation of internal angular momentum Lint = µℓ2ϕ̇.

(c) When there is no gravity, rotations are a symmetry of the action. The specified variation
rotates the system as a whole by an angle ϵ around P0, and, without gravity, leads to angular
momentum conservation. Let’s see what it gives when there is gravity. Following the Noether
method

δS =

∫
dt

(
∂L

∂ϕ̇
+
∂L

∂θ̇

)
∂tϵ+

(
∂L

∂ϕ
+
∂L

∂θ

)
ϵ (23)

=

∫
dt

(
∂L

∂ϕ̇
+
∂L

∂θ̇

)
∂tϵ−mg(D sin θ + αℓ sinϕ)ϵ , (24)

leading (after integrating by parts) to the equation of angular momentum evolution

d

dt

(
MD2θ̇ +MDαℓ cos(θ − ϕ)(θ̇ + ϕ̇) + µℓ2ϕ̇

)
=−Mg(D sin θ + αℓ sinϕ) (25)

=−MgXcm . (26)

The right hand side of this equation is the total external torque provided by gravity. If
gravity is zero we have a conserved quantity

MD2θ̇ +MDαℓ cos(θ − ϕ)(θ̇ + ϕ̇) + µℓ2ϕ̇ = 0 , (27)

which is the total angular momentum of the system around the point P0.

(d) We first observe that when δm = 0 we have that the net momentum transfer is zero we
have a solution

ϕ = ωt+ C. (28)



The value of ω is related to κ. From the picture, the internal angular momentum

µℓ2ϕ̇ = κ0ℓ , (29)

and so
ω =

κ0
µℓ
. (30)

Then θ = 0 is the remaining solution.

When this solution is perturbed we have θ ≪ 1. Then expanding we look at the conservation
equation of angular momentum, which, to first order θ and α, approximately reads

d

dt

(
MD2θ̇ +MDαℓ cos(ωt)ω + µℓ2ω

)
= −MgDθ −Mgαℓ sin(ωt) , (31)

leading to

θ̈ + Ω2θ = −α ℓ
D

sin(ωt)
(
Ω2 − ω2

)
. (32)

The dominant term is the second one

θ̈ + Ω2θ = α
ℓ

D
sin(ωt)ω2 . (33)

This is a driven harmonic oscillator, the steady state solution is found by substituting
A sin(ωt) leading to

A = −
α ℓ

D
ω2

ω2 − Ω2
≃ −α ℓ

D
. (34)



ELECTROMAGNETISM 1

Magnetism from relativity

Consider a thin string of positive charges moving to the right with velocity v. We will
characterize the stream of charges by a continuous line charge λ. Superimposed on this
positive string, is a negative string with line charge −λ moving to the left at the same speed.
At a distance a away, there is a point charge q moving to the right at a speed u < v as shown
in the Figure.

(a)[2pt] What is the net charge and current carried by the strings of charges, in the rest
frame F?

(b)[5pt] What is the net charge λ′ carried by the strings of charges, in the frame F ′ attached
to the charge q?

(c)[5pt] Evaluate the electric force exerted on the charge q in the frame F ′.

(d)[5pt] What is the force exerted on the charge q in the frame F?

(e)[3pt] Identify explicitly the physical origin of the force in F .



Solution

(a) The net line charge is zero λ− λ = 0, and the net current in the frame F is

I = λ(+v) + (−λ)(−v) = 2λv to the right (1)

(b) In the frame F ′ attached to the charge q, the net line charge is not zero λ± = ±γ±λ
with

γ± =
1√

1− V 2
±/c

2
= γvγu

(
1∓ uv

c2

)
V± =

v ∓ u

1∓ uv/c2
(2)

hence the net line charge

λ′ = λ+ + λ− = (γ+ − γ−)λ0 = − 2λ0uv/c
2√

1− v2/c2
√
1− u2/c2

≡ γvγu(−2λ0uv/c
2) (3)

Here λ0 is the line charge of the positive string in its own rest frame, i.e λ = γvλ0.

(c) In the frame F ′, the net λ′ creates an electric force on the charge q

F ′ = qE ′ = q
2λ′

a
=

2q

a

(
−2λuv/c2√
1− u2/c2

)
(4)

(d) The force F ′ translates by relativity to an attractive force F in the frame F

F =
F ′

γv
=

−4qλuv

ac2
(5)

(e) The attraction of the charge q to the wire is the expected Lorentz force

F = −qv
c

(
4λu

ac
= B

)
(6)



ELECTROMAGNETISM 2

Reflection and Polarization

(a)[5pt] Consider a plane electromagnetic wave incident on a boundary between two dielec-
tric materials. What components of the fields (D, B, E, and H) are continuous across the
boundary? Hint: Consider the integral form of Maxwell’s equations at the boundary.

(b)[5pt] Using these relationships, find the ratio of the electric field amplitudes of electro-
magnetic plane waves incident and reflected from a planar boundary between two materials
with indices of refraction given by n1 and n2 as a function of angle of incidence, θi. Consider
(p-)polarization where the electric field is in the plane of incidence/reflection (and the mag-
netic field is parallel to the boundary) as shown in the diagram on the left. You may find it
helpful to use Snell’s law (n1 sin(θi) = n2 sin(θt)), and you can assume that the two media
have the same magnetic properties, µ1 = µ2. Also, you can make use of the relationship
k = nω/c between the wave-number k, the frequency ω, and the refraction index n, as well
as the relationship between the field strengths in the plane waves, H = kE/µω.

(c)[5pt] Find the reflection coefficient for the other (s-)polarization in which the magnetic
field is in the plane of incidence/reflection (and the electric field is parallel to the boundary)
as shown in the figure on the right.

(d)[5pt] For what angle and polarization does the reflection coefficient vanish if n1 = 1.2

and n2 = 1.5?



Solution

(a) From Gauss’ law, we have that the perpendicular component of D is continuous. From
Faraday’s law, we have that the parallel component of E is continuous. Similarly, the parallel
component of H is continuous, and the perpendicular component of B is continuous.

(b) Making use of θr = θi and the field continuities given above, we have for p polarization:

Hi −Hr = Ht (1)

Ei cos(θi) + Er cos(θi) = Et cos(θt) (2)

Making use of H = kE/µω, we can combine the two equations and eliminate Et to arrive
at:

rp =
Er

Ei

=
ki cos(θt)− kt cos(θi)

kt cos(θi) + ki cos(θt)
(3)

Using Snell’s law to express θt in terms of θi and the relationship between n and k, we can
rewrite this equation as:

rp =
Er

Ei

=

√
(n2/n1)2 − sin2(θi)− (n2/n1)

2 cos(θi)√
(n2/n1)2 − sin2(θi) + (n2/n1)2 cos(θi)

(4)

(c) Making use of θr = θi and the field continuities given above, we have for s polarization:

Ei + Er = Et (5)

Hi cos(θi)−Hr cos(θi) = Ht cos(θt) (6)

Making use of H = kE/µω, we can combine the two equations and eliminate Et to arrive
at:

rs =
Er

Ei

=
ki cos(θi)− kt cos(θt)

ki cos(θi) + kt cos(θt)
(7)

Using Snell’s law to express θt in terms of θi and the relationship between n and k, we can
rewrite this equation as:

rs =
Er

Ei

=
cos(θi)−

√
(n2/n1)2 − sin2(θi)

cos(θi) +
√

(n2/n1)2 − sin2(θi)
(8)

(d) The reflection coefficient vanishes for p polarization at Brewster’s angle, which is defined
by:

tan(θB) = n2/n1 (9)

so, θB = arctan(n2/n1) = 0.90 Rad.



ELECTROMAGNETISM 3

Charged sphere in magnetic field

A point charge (−Q) is surrounded by a thin non-conducting
sphere of radius R with evenly distributed charge Q so that
the entire system is neutral. The sphere has total mass M
and can freely rotate around the center without friction.
Initially, there is uniform external magnetic field B along
the ẑ axis, and the sphere is static.

(a)[5pt] Calculate the Poynting vector S at every point in space and the total angular
momentum carried by the electromagnetic fields.
Hint: Spherical coordinates and basis (r̂, θ̂, φ̂) are the most convenient choice.

(b)[5pt] The external magnetic field is gradually reduced to zero. Calculate the final angular
velocity ω of the sphere. Neglect the magnetic field created by the sphere itself.
Hint: The moment of inertia of a thin sphere is I = 2

3
MR2.

(c)[2pt] Compare the result of part (a) to part (b) and provide a qualitative explanation.

(d)[8pt] Calculate the magnetic field inside and outside of the charged sphere rotating with
angular velocity ωẑ. One potential approach is

i) calculate the magnetic field B1 in the center of the rotating sphere;

ii) calculate the total magnetic dipole moment m of the rotating sphere;

iii) assuming that the magnetic field outside the sphere is that of a point-like magnetic
dipole m, calculate the magnetic field B2(r, θ, φ) for r > R;

iv) show that the magnetic field equal to B2 just outside the sphere and B1 just inside the
sphere satisfies the Maxwell equations.

Alternative methods to calculate the magnetic field will also be accepted for full score.



Solution

(a) The electric field inside the sphere is radial, E = − Q
4πϵ0r2

r̂, and the Poynting vector is

S =
1

µ0

E×B =
QB sin θ

4πϵ0µ0r2
φ̂ , (1)

where in the last line we have used ẑ = cos θr̂−sin θθ̂. The density of mechanical momentum
is π = S/c2, and the density of angular momentum (e.g., around the origin) is

m = r× π = −QB sin θ

4πr
θ̂ (2)

Averaging this vector over the volume of the sphere yields nonzero value only along the ẑ
axis, so we need to integrate only the θ̂z = − sin θ component of m:

Mz =

∫ R

0

dr r2
∫ π

0

dθ sin θ

∫ 2π

0

dφ
QB sin θ

4πr
sin θ

=
1

2
QB

∫ R

0

dr r

∫ π

0

dθ sin3 θ =
1

3
QBR2 .

(3)

(b) As the field is reduced, there will be induced electric field moving the charges in the
direction to compensate the change in the field, so that the total induced electric field around
the ẑ axis of the sphere will be ∮

∂A

dl · Eind = A

(
−∂B
∂t

)
, (4)

where ∂A is the edge of a surface patch A. Taking A to be a cross-section of the sphere at
angle θ, the integral above becomes (πR2 sin2 θ)(−∂B/∂t), and the total torque acting on
the ring-like segment of the sphere [θ; θ + dθ]× [0; 2π] is

dτ = σ(Rdθ) (R sin θ) (πR2 sin2 θ)

(
−∂B
∂t

)
(5)

where σ = Q
4πR2 is the surface charge density and R sin θ is the “lever arm”. Carrying out the

integration over θ yields

τ =
Q

4πR2
πR4

∫ π

0

dθ sin3 θ

(
−∂B
∂t

)
ẑ =

1

3
QR2

(
−∂B
∂t

)
ẑ . (6)

Changing the field from Bẑ to 0 yields the total change of the sphere’s angular momentum
to
∫
dtτ = 1

3
QR2(−∆B) = 1

3
QBR2ẑ, so its final angular velocity is

ω =
L

I
=

(1/3)QBR2z

(2/3)MR2
=
QB

2M
z (7)



(c) The angular momentum of the electromagnetic fields was transferred to the sphere. It
is possible to demonstrate that by computing the full Maxwell’s stress tensor that contains
the shear stress (flow of angular momentum).

(d)

i) The magnetic field in the center of the sphere can be computed using the Biot-Savart law.
It will be aligned with the angular velocity and the ẑ axis. The ring-like spherical seg-
ment [θ; θ+dθ]×[0; 2π] carries current dI = σRdθ v = σRdθ ωR sin θ = (Qω/4π) sin θdθ,
and its contribution to the magnetic field in the center is

dB1z =
µ0

4πR2
(ldI) sin θ =

µ0

4πR2

Qω

4π
sin θdθ (2πR sin θ) sin θ =

µ0Qω

8πR
sin3 θ dθ (8)

and the integration yields B1z =
µ0Qω
6πR

.

ii) The total magnetic dipole can be likewise found by integration over the sphere; the
segment contribution is

dmz = SdI = πR2 sin2 θ
1

4π
Qω sin θdθ =

1

4
QωR2 sin3 θdθ (9)

and the integrated value is mz =
1
3
QωR2.

iii) The magnetic dipole field is

B2 =
µ0

4πR3

[
3(m · r̂)r̂ −m

]
=
µ0Qω

12πR

[
2r̂ cos θ + θ̂ sin θ

]
(10)

iv) The difference between the magnetic dipole field B2 and the constant field B1 = B1ẑ =
µ0Qω
6πR

(r̂ cos θ − θ̂ sin θ) is

B2 −B1 =
µ0Qω

4πR
sin θ θ̂ (11)

which is tangential and exactly satisfies the Maxwell equation (n · ∇)×B = µ0K with
the surface current density K = σv = Qω sin θφ̂/(4πR), where n = r̂ is the outward
normal vector to the sphere’s surface.



QUANTUM MECHANICS 1

Hyperbolic cosine quantum well.

A particle of mass m moves in a 1D hyperbolic cosine quantum well with potential energy

V (x) = − ℏ2

ma2
1

cosh2(x/a)
,

where a is the “size” of the well.

(a)[6pt] Show that ψ0(x) = C/ cosh(x/a) is a bound state solution, i.e., it solves the time-
independent Schrödinger equation. This turns out to be the only bound state; all excited
states have positive energies and are, therefore, the extended states. Find the exact bound
state energy E0 and normalize the wave-function ψ0(x).

(b)[4pt] Two identical spin-1/2 particles occupy the state ψ0(x). Neglect first the interaction
between the particles. For the ground state of this system, write down the two-particle wave-
function ψ(x1, x2)χ(1, 2), including the spin part χ(1, 2). What is the total energy of this
state? Is it degenerate?

(c)[5pt] Assume now that the two particles interact via potential U(x1, x2) = U0aδ(x1−x2).
Evaluate the correction δE to the ground state energy due to this interaction using the first-
order perturbation theory.

(d)[5pt] If the particles interact also through an anisotropic spin interaction

VS = U1σz1σz2 + U2[σx1σx2 + σy1σy2] ,

where U1,2 > 0, find the corresponding contribution ES to the ground-state energy of the
two-particle system.

The following integral might be useful in this problem:∫
dx

coshn(x)
=

sinh(x)

(n− 1) cosh(n−1)(x)
+
n− 2

n− 1

∫
dx

cosh(n−2)(x)
.



Solution

(a) The stationary Scrödinger equation is:

− ℏ2

2m

d2ψ

dx2
− ℏ2

ma2
1

cosh2(x/a)
ψ(x) = Eψ(x) .

For ψ0(x) = C/ cosh(x/a), we have

dψ0

dx
= − C sinh(x/a)

a cosh2(x/a)
,

d2ψ0

dx2
= − C

a2 cosh(x/a)
+ 2

C sinh2(x/a)

a2 cosh3(x/a)
=

C

a2 cosh(x/a)
− 2C

a2 cosh3(x/a)
.

We see that the equation is satisfied, if

E0 = − ℏ2

2ma2
.

Using the third of the given integrals, we find directly the normalization constant

C =
1√
2a
.

(b) Since both particles occupy the same ground state, the coordinate part of the two-particle
wave-function should simply be the product of two ψ0s:

ψ(x1, x2) = ψ0(x1)ψ0(x2) . (1)

The spin-1/2 particles are fermions, for which the total wave-function should be antisym-
metric with respect to the interchange of the particle coordinates. The coordinate part (1)
of the wave-function is symmetric with respect to the interchange of x1, x2. This means that
the spin part should be antisymmetric:

χ(1, 2) = −χ(2, 1) .

As one knows from the basic addition of the quantum angular momenta, the antisymmetric
combination of the two spin-1/2 is the “singlet” state which has zero total angular momentum

|χ(1, 2)⟩ = 1√
2
(| ↑, ↓⟩ − | ↓, ↑⟩) .

The singlet state is unique. This means that the ground state of the two-particle system
is not degenerate. The energy E of this state is just the sum of the energies of the two
single-particle states

E = 2E0 = − ℏ2

ma2
.



(c) Correction to energy due to perturbation U in the first order of the perturbation theory
is given by the following standard expression

δE = ⟨ψ|U |ψ⟩ =
∫
dx1dx2ψ

∗(x1, x2)U(x1, x2)ψ(x1, x2) .

where we took into account that the perturbation potential does not act on spins. Using
expressions for the perturbation potential and the two-particle wave-function, we get:

δE = U0a

∫
dx[ψ0(x)]

4 =
U0

4a

∫
dx

[cosh(x/a)]4
.

Making use of the integral given in the problem, we find

δE =
1

3
U0 .

(d) One can see directly that the singlet spin state is an eigenstate of the anisotropic spin
interaction. Indeed, for the z-component part of the interaction, one has

σz1σz2|χ(1, 2)⟩ = −|χ(1, 2)⟩ .

The same can be seen directly for the x, y-component of the interaction, by introducing the
usual spin-flip operators

σ± =
1

2
(σx ± iσy) , i.e. σx = σ+ + σ− , σy = −i(σ+ − σ−) .

which have the following properties

σ+| ↓⟩ = | ↑⟩ , σ−| ↑⟩ = | ↓⟩ .

In terms of these operators, the x, y-component of the interaction is:

σx1σx2 + σy1σy2 = 2[σ+,1σ−,2 + σ−,1σ+,2] .

From this, we see immediately that the x, y-component of the interaction acts on the singlet
state similarly to the z-component:

(σx1σx2 + σy1σy2)|χ(1, 2)⟩ = −2|χ(1, 2)⟩.

This means that the singlet state is an eigenstate of the spin interaction VS with the eigen-
value ES:

ES = −(U1 + 2U2) .

An alternative solution is to construct a 4x4 matrix of the 2-spin Hamiltonian,

VS =


U1

−U1 2U2

2U2 −U1

U1

 ,

which is easy to diagonalize to find the eigenvalues U1 (×2 degenerate) and (−U1 ± 2U2).



QUANTUM MECHANICS 2

Toy Model of Molecule

In a highly simplified model of a molecule, an electron moves in the vicinity of three nuclei
which include one “A” nucleus and two “B” nuclei, inter-linked as shown in the figure. In
absence of any coupling between electron states bound to different nuclei, the electron has
energy E(0)

1 when it is on the “A” nucleus and energy E(0)
2 when it is on a “B” nucleus, such

that E(0)
2 − E

(0)
1 = ∆ > 0. The state of the electron can be defined by its location, labeled

as (1)-(3) in the figure: |1⟩ = (100), |2⟩ = (010), |3⟩ = (001).

(a)[2pt] Under the approximation that the electron cannot move from one nuclei to another,
write down the Hamiltonian in the basis of state |1⟩, |2⟩, and |3⟩.

(b)[2pt] Now we will allow the electron to move between an A atom and a B atom with
a coupling energy of a,but not between the B atoms. Assume a ≪ ∆. Write down the
perturbation Hamiltonian associated with A-B coupling.

(c)[5pt] Calculate perturbation to energy E
(0)
1 to the second order and calculate the 1st

order perturbation to the energy E(0)
2 .

(d)[6pt] Now calculate the precise (without using perturbation method) eigenstates of the
system and their energies. Compare your result with the perturbation calculation under the
limit a≪ ∆.

(e)[5pt] Assuming an electron at the vicinity of nuclei A at t = 0, what is the probability
of finding the electron at the vicinity of a nuclei B at time t?



Solution

(a) Without inter-nuclei coupling, the Hamiltonian is simply:

H0 =

E
(0)
1 0 0

0 E
(0)
2 0

0 0 E
(0)
2

 (1)

(b) The perturbation Hamiltonian describes the couplings between the states:

W0 =

0 a a

a 0 0

a 0 0

 (2)

(c) The energy state of E(0)
1 is non-degenerate, and the energy correction up to the second-

order perturbation is:

E
(2)
1 = E

(0)
1 + ⟨1|W |1⟩+

3∑
i=2

|⟨i|W |1⟩|2

E
(0)
1 − E

(0)
2

= E
(0)
1 − 2a2

∆
(3)

The states |2⟩, |3⟩ are degenerate. The matrix elements of W between the two E(0)
2 states

are zero. The secular equation is:

det

(
0− ϵ 0

0 0− ϵ

)
= 0 (4)

Hence ϵ = 0 and the first-order correction to the E(0)
2 is zero.

(d) The full Hamiltonian is:

H =

E
(0)
1 a a

a E
(0)
2 0

a 0 E
(0)
2

 (5)

To find the eigen-energies of the system we solve the equation det(H − EI) = 0. We have

(E
(0)
1 − E)(E

(0)
2 − E)2 − 2a2(E

(0)
2 − E) = 0 (6)

hence
(E

(0)
2 − E)[(E

(0)
1 − E)(E

(0)
2 − E)− 2a2] = 0 (7)



Solve for E, we have:

E1,3 =
1

2

[
(E

(0)
1 + E

(0)
2 )±

√
∆2 + 8a2

]
(8)

E2 = E
(0)
2 (9)

Under the limit a≪ ∆,

E1,3 =
1

2

[
(E

(0)
1 + E

(0)
2 )±∆

√
1 +

8a2

∆2

]

≃ 1

2

[
(E

(0)
1 + E

(0)
2 )±∆(1 +

4a2

∆2
)

]
Hence we get:

E1 ≃ E
(0)
2 +

2a2

∆
(10)

E3 ≃ E
(0)
1 − 2a2

∆
(11)

Note that the result for E1 is the same as that in the perturbation calculation under the
limit a≪ ∆.

The eigenvector ψ =

ϕ1

ϕ2

ϕ3

 follows:

(E
(0)
1 − E)ϕ1 + a(ϕ2 + ϕ3) = 0 (12)

aϕ1 + (E
(0)
2 − E)ϕ2 = 0 (13)

aϕ1 + (E
(0)
2 − E)ϕ3 = 0 (14)

With E = E1, E3 this gives

ψ1,3 =
1√

1 + 2a2

(E
(0)
2 −E1,3)2


1
−a

E
(0)
2 −E1,3

−a

E
(0)
2 −E1,3


=

1√
1∓ 8a2

(∆−
√
∆2+8a2)2

 1
−2a

∆∓
√
∆2+8a2

−2a
∆∓

√
∆2+8a2





And with E = E2:

ψ2 =
1√
2

 0

1

−1

 (15)

(e) The full wave-function is a superposition of the eigenstates:

Φ =
3∑

i=1

ciψie
− iEit

ℏ (16)

at t = 0 the electron is at the vicinity of A nuclei, so

Φ(0) =
3∑

i=1

ciψi =

1

0

0

 (17)

For simplicity we define the normalization factors as 1√
1∓ 8a2

(∆−
√

∆2+8a2)2

= α1,3r, and −2a
∆∓

√
∆2+8a2

=

γ1,3 so

ψ1,3 = α1,3

 1

γ1,3
γ1,3

 (18)

The equations for ci are:

c1α1 + c3α3 = 1 (19)

c1α1γ1 +
c2√
2
+ c3α3γ3 = 0 (20)

c1α1γ1 −
c2√
2
+ c3α3γ3 = 0 (21)

We get c1 = γ3
α1(γ3−γ1)

, c2 = 0 and c3 = γ1
α3(γ1−γ3)

.



At time t, the wave-function is

Φ(t) =

 c1α1e
− iE1t

ℏ + c3α3e
− iE3t

ℏ

c1α1γ1e
− iE1t

ℏ + c3α3γ3e
− iE3t

ℏ

c1α1γ1e
− iE1t

ℏ + c3α3γ3e
− iE3t

ℏ



=


γ3

γ3−γ1
e−

iE1t
ℏ + γ1

γ1−γ3
e−

iE3t
ℏ

γ1γ3
γ3−γ1

e−
iE1t
ℏ + γ1γ3

γ1−γ3
e−

iE3t
ℏ

γ1γ3
γ3−γ1

e−
iE1t
ℏ + γ1γ3

γ1−γ3
e−

iE3t
ℏ


=

γ1γ3
γ3 − γ1


1
γ1
e−

iE1t
ℏ − 1

γ3
e−

iE3t
ℏ

e−
iE1t
ℏ − e−

iE3t
ℏ

e−
iE1t
ℏ − e−

iE3t
ℏ



The probability of finding the electron at the vicinity of a B nuclei is:

P = 2(
γ1γ3
γ3 − γ1

)2|e−
iE1t
ℏ − e−

iE3t
ℏ |2 (22)

P = 4(
γ1γ3
γ3 − γ1

)2(1− cos
(E1 − E3)t

ℏ
) (23)

Put in the values of γ1,3, this is

P =
4a2

∆2 + 8a2
(1− cos

(E1 − E3)t

ℏ
) (24)



QUANTUM MECHANICS 3

Paramagnetic resonance

Consider a static electron in a constant magnetic field
of magnitude B0 along the z axis. In addition, there is
a time-dependent magnetic field along the x axis with
magnitude B1 cosωt, as shown in the figure, where ω
is the typical frequency of the field. Let’s assume that
B0 > B1

B0
SB1cos(ωt)

x

z

(a)[3pt] Calculate the Larmor frequency ωL of the electron in the constant magnetic field B0.
(The Larmor frequency is the frequency of electron spin precession in a constant magnetic
field)

(b)[6pt] Write the time-dependent Schrödinger equation for the two spin projections of the
electron.

(c)[5pt] Find the general solution for the time-dependent Schrödinger equation for the two
spin projections using the rotating wave approximation, in which only terms with frequency
(ω−ωL) contribute to the spin dynamics (in other words, the fast oscillations in spin dynamics
are neglected). Can you comment on the validity and accuracy of the approximation?

(d)[3pt] Assuming that the electron at t=0 is the |Sz =
1
2
⟩ spin state, what is the probability

of finding the electron in the |Sz = −1
2
⟩ spin state at time T?

(e)[3pt] Can you sketch the probability of finding the electron in the |Sz = −1
2
⟩ state as

a function of ω for some fixed time T? What does it look like? Does it resemble some
well-known function?

As a reminder, here are the Pauli matrices:

σx =

(
0 1

1 0

)
;σy =

(
0 −ı
ı 0

)
;σz =

(
1 0

0 −1

)



Solution

(a) The Larmor frequency is the precession frequency of the spin of a particle in the presence
of a constant magnetic field. In the case of the electron, the Larmor frequency is ωL = geµBB0

ℏ ,
where µB is the Bohr magneton and ge is the electron gyromagnetic ratio. This result is easily
obtained from dimensional analysis, keeping in mind that the Hamiltonian of the system is
Ĥ = geµBB · Ŝ/ℏ.

(b) Let’s denote the spin-up projection of the electron spin by(
1

0

)
, (1)

and the spin-down as (
0

1

)
. (2)

In this case, assuming that the wave function of the electron is given by

|Ψ(t)⟩ =

(
α(t)

β(t)

)
, (3)

one finds that the time-dependent Shchröringer equation ı∂|Ψ(t)⟩
∂t

= Ĥ|Ψ(t)⟩, yields

dα(t)

dt
= −ıωL

2
α(t)− ı

ωLB1

2B0

cos (ωt)β(t) (4)

dβ(t)

dt
= ı

ωL

2
β(t)− ı

ωLB1

2B0

cos (ωt)α(t) (5)

(6)

(c) To find the general solution of the time-dependent Shchröringer equation, we introduce
the following changes of variables: α(t) = a(t)e−ıωLt/2 and β(t) = b(t)eıωLt/2, yielding

da(t)

dt
= −ıωLB1

2B0

cos (ωt)b(t) (7)

db(t)

dt
= −ıωLB1

2B0

cos (ωt)a(t) (8)

(9)

At this point, we use the rotating wave approximation; only terms ωL − ω are kept, and



hence, one finds

da(t)

dt
= −ıωLB1

4B0

eı(ωL−ω)tb(t) (10)

db(t)

dt
= −ıωLB1

4B0

eı(ω−ωL)ta(t) (11)

. (12)

Next, taking the second derivative with respect of time of a(t) and using the differential
equation for db(t)

dt
, we find

d2a(t)

dt2
− ı(ωL − ω)

da(t)

dt
+

(
ωLB1

4B0

)2

a(t) = 0, (13)

and the general solution is given by

a(t) = a+e
ıλ+t + a−e

ıλ−t, (14)

where

λ± =
1

2

(ωL − ω)±

√
(ωL − ω)2 + 4

(
ωLB1

4B0

)2
 . (15)

Similarly,

b(t) = ı
4B0

B1ωL

eı(ω−ωL)t
(
ıλ+a+e

ıλ+t + ıλ−a−e
ıλ−t
)
. (16)

(d) The initial conditions of the problem implies that a+ + a− = 1 and λ+a+ + a−λ− = 0.
The solution is a+ = −λ−

λ+−λ−
and a− = λ+

λ+−λ−
. With this in mind, we can use Eq. (16) to get

the probability of finding the electron in the spin-down projection at time T as

|b(T )|2 =
4
(

ωLB1

4B0

)2
(ωL − ω)2 + 4

(
ωLB1

4B0

)2 sin2

T/2
√
(ωL − ω)2 + 4

(
ωLB1

4B0

)2
. (17)

The probability at a given time T follows a Lorentzian profile.

(e) As explained before, the probability of excitation follows a Lorentzian profile as a function
of the driven frequency ω, and hence it looks like



The probability at a given time T follows a Lorentzian profile.

Question 5 As explained before, the probability of excitation follows a
Lorentzian profile as a function of the driven frequency !, and hence it looks
like

ωωL

Pr
ob

ab
ili
ty

1

Figure 2: Probability of finding the electron in the spin-down projection as a
function of the driven frequency

4

FIG. 2. Probability of finding the electron in the spin-down projection as a function of the driven

frequency



STATISTICAL MECHANICS 1

Molecular chain

Consider a one-dimensional chain of molecules consisting of N molecules which exist in two
configurations α and β with corresponding energies ϵα and ϵβ and lengths a and b. The chain
is in thermal equilibrium at temperature τ and subject to a tensile force f (see the figure).

(a)[5pt] Find the partition function.

(b)[5pt] Find the average length ⟨L⟩ of the chain as a function of f and temperature.

(c)[5pt] Assume that ϵα > ϵβ and a > b. Estimate the average length ⟨L⟩ in the absence
of the tensile force as a function of temperature. What are the high and low temperature
limits? What do these correspond to physically? Sketch a plot of ⟨L⟩ versus τ .

(d)[5pt] Calculate the linear response function (Hooke’s constant) of the chain

χ =

(
∂⟨L⟩
∂f

)
f=0

and show that it is greater than zero. Why should this be the case?



Solution

(a) Consider one link of the chain in its two configurations α and β. The energy of the link
in each configuration is Eα = ϵα−fa and Eβ = ϵβ−fb. The partition function for the whole
chain is given by

Z =

(∑
α,β

e−Eα,β/τ

)N

=
(
e(fa−ϵα)/τ + e(fb−ϵβ)/τ

)N
(1)

(b) The average length of the chain may be found from the partition function:

⟨L⟩ = τ

(
∂ lnZ

∂f

)
τ,N

=
N
[
ae(fa−ϵα)/τ + be(fb−ϵβ)/τ

]
e(fa−ϵα)/τ + e(fb−ϵβ)/τ

(2)

(c) If f = 0, Eq. (2) becomes

⟨L⟩ = N
ae−ϵα/τ + be−ϵβ/τ

e−ϵα/τ + e−ϵβ/τ
= N

a+ be(ϵα−ϵβ)/τ

1 + e(ϵα−ϵβ)τ
(3)

If ϵα,β ≪ τ (high temperature):

⟨L⟩ ≃ N
a+ b

2
(4)

which indicates that on average half of the links are in configuration α and half are in β. If
ϵα,β ≫ τ (low temperature):

⟨L⟩ ≃ N [ae−(ϵα−ϵβ)/τ + b] (5)

So almost all links in the chain are in β. The changeover temperature is ϵα − ϵβ.

L

Nb

N(a + b)/2

FIG. 3. Plot of average length versus temperature.



(d) We can rewrite Eq. (2) using δ = (ϵα − ϵβ)/τ

⟨L⟩ = N
aefa/τ + befb/τ+δ

efa/τ + efb/τ+δ
= N

a+ bef(b−a)/τ+δ

1 + ef(b−a)τ+δ
. (6)

At small f this becomes

⟨L⟩ ≃ N
a+ beδ + eδbf(b− a)/τ

1 + eδ + eδf(b− a)/τ

≃ N

[
a+ beδ

1 + eδ
+
eδbf(b− a)/τ

1 + eδ
− eδ(a+ beδ)f(b− a)/τ

(1 + eδ)2

]
= N

a+ beδ

1 + eδ
+N

eδf(b− a)

τ(1 + eδ)

[
b− a+ beδ

1 + eδ

]
= N

a+ beδ

1 + eδ
+N

eδf(b− a)2

τ(1 + eδ)2
.

(7)

Therefore,
∂⟨L⟩
∂f

∣∣∣∣∣
f=0

=
Neδ

τ

(
b− a

1 + eδ

)2

> 0 (8)

as it should be since it corresponds to the thermodynamic inequality for a system in equi-
librium: −(∂V/∂P ) > 0.



STATISTICAL MECHANICS 2

Conductance quantization and counting statistics

In this problem, we discuss electron transport
properties of a narrow ballistic channel be-
tween two large equilibrium electrodes each in
equilibrium with different chemical potentials
µ1,2 and small temperature T ≪ µ1,2.

As a result, the voltage across the channel is equal to V = (µ1 − µ2)/e. The channel can be
modelled as a one-dimensional (1D) gas of non-interacting electrons with the two different
Fermi energies µ1 and µ2 on the two sides of the 1D Fermi surface. Neglect electron spin.

(a)[4pt] Assuming a general dispersion relation ϵ(k) for the electrons, calculate the density
of single-particle states ν(ϵ) = dn/dϵ per unit length in the channel (e.g., with the periodic
boundary conditions on some normalization length L). Do this separately at the two end
points of the 1D Fermi surface, which correspond to electrons moving in opposite directions.

(b)[5pt] Assuming steady equilibrium between the channel and the electrodes, justify which
side of the Fermi surface (left- or right-moving) of electrons in the channel must be at
chemical potentials µ1 and µ2. Write down the expressions for the electric currents J±
carried by electrons in each direction. Calculate the net current J = J+ − J− through the
channel for small bias voltage eV ≪ µ1,2, show that it satisfies Ohm’s law J = GV , and find
the conductance G of the channel. Hint: Electric current carried by electrons with energy
ϵ is equal to en(ϵ)u(ϵ), where n(ϵ) is the 1D concentration of electrons with energy ϵ, and
u(ϵ) = (1/ℏ)dϵ/dk is the velocity of electrons with this energy.

(c)[3pt] How the result for G in part (b) changes if the channel contains a potential barrier
for electrons with probabilities of transmission D and reflection R?

(d)[4pt] At T = 0, one can find the probability distribution (“counting statistics”) for the
charge transferred through the channel using the following simple model. Non-interacting
electrons in the energy range relevant for transport are incident on the tunnel barrier with
some frequency f . Each electron scatters independently with the probabilities D and R to
be transmitted through or reflected from the barrier, respectively. In this model, calculate
the probability pn that n electrons are transferred through the channel during a long time
interval t, N = tf ≫ 1. Calculate also the average current J and compare it to the results
of parts (b) and (c) to find the frequency f .

(e)[4pt] Use the probability distribution pn to calculate the stochastic noise in the current
J . The noise is characterized by the zero-frequency spectral density SJ(0) that is defined as
SJ(0) = e2σ2

n/t, where σn is the standard deviation of n: σ2
n = ⟨n2⟩ − ⟨n⟩2.



Solution

(a) With periodic boundary conditions imposed on some normalization length L, the single-
particle momentum states are spaced by the wave-number interval 2π/L. Therefore, the
number of states dN in an interval dk of the wave-number is dN = Ldk/(2π), and dN =

dk/(2π) per unit length. The wave-number interval dk correspond to the energy interval
dϵ = [dϵ(k)/dk]dk. Hence, the energy density of the single-particle states per unit length is

ν(ϵ) = dN/dϵ = (dN/dk)(dk/dϵ) = 1/[2πdϵ(k)/dk]

at both of the two end points of the 1D Fermi surface (i.e., for both the forward- and
backward-moving electrons).

(b) The equilibrium occupation probabilities of the single-particle states are given by the
Fermi distribution functions f(ϵ, µj). The 1D concentration of electrons with certain energy
is then n(ϵ) = ν(ϵ)f(ϵ, µj), and the total current J+ carried by the forward-moving electrons
is

J+ = e

∫
dϵν(ϵ)f(ϵ, µ1)u(ϵ) =

e

2πℏ

∫
dϵf(ϵ, µ1) .

The last equality follows since the factors dϵ(k)/dk in the density of states and in the velocity
cancel out. The current J− carried by the backward-moving electrons is given by the same
expression with µ1 replaced by µ2. The net current J is then

J =

∫
e

h

∫
dϵ[f(ϵ, µ1)− f(ϵ, µ2)] .

and for eV, T ≪ µ1,2, this integral reduces simply to (µ1 − µ2). We get, finally:

J = GV, G =
e2

h
.

We see that the conductance of the 1D ballistic channel is determined by the fundamental
constants only.

(c) In the presence of the tunnel barrier with transmission probability D, only the fraction
D of the incident electrons is transmitted on average through the channel. This means that
the current is reduced by the factor D in comparison to the situation without the barrier,
i.e.

G =
e2D

h
.

(d) The time interval t encloses N = tf independent scattering events. In one scattering,
an electron is transferred through the channel with probability D, and reflected from it
with probability R, D + R = 1. The fact that different scattering events are independent



immediately means that the probability pn to have n electrons transferred in N attempts is
given by the binomial distribution:

pn =
N !

n!(N − n)!
DnRN−n.

The average n then is:

⟨n⟩ =
N∑

n=0

npn =
N∑

n=1

N !

(n− 1)!(N − n)!
DnRN−n = DN

N−1∑
k=0

(N − 1)!

k!(N − 1− k)!
DkRN−1−k = DN.

This expression correspond precisely to the Ohm’ law found in part (b) with

J =
e⟨n⟩
t

= eDf .

Comparing this equation to the expression for the current found in parts (b) and (c), we see
that the attempt frequency f is determined by the voltage across the channel:

f = eV/h .

(e) The standard deviation of n can be found by calculating first the average of the product
n(n− 1), in precisely the same way as we just calculated the average n:

⟨n(n− 1)⟩ =
N∑

n=0

n(n− 1)pn =
N∑

n=2

N !

(n− 2)!(N − n)!
DnRN−n = D2N(N − 1).

From this
σ2
n = ⟨n2⟩ − ⟨n⟩2 = DN −D2N = NDR ,

and finally

SJ(0) =
e3V

h
DR .

At small electron transparency, D ≪ 1 this result reduces to classical “shot” noise SJ(0) = eJ

related to electron discreteness of the current flow. With increasing D, the shot noise is
suppressed by quantum nature of electron propagation.



STATISTICAL MECHANICS 3

Quantum statistics

A potential well at temperature T contains exactly two non-interacting but identical
fermions. The single-particle energy levels in the well are linearly spaced

ϵk = k∆ with k = 0, 1, . . .∞. (1)

Each single-particle energy level consists of g quantum states. The g-fold degeneracy of each
energy level comes from spin and other internal quantum numbers. Assume that g ≫ 1.
(a)[5pt] Calculate the free energy F of the system when g ≫ 1, including the first correction
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k = 3

FIG. 4. Single-particle energy levels of a potential well. Each level (shown by the lines) consists of

g ≫ 1 internal states (not shown). The two circles indicate a configuration where one particle is

one of the g-internal states with k = 0 and one particle is one of the g-internal states with k = 3.

due to quantum statistics. (b)[6pt] How would the result in part (a) change for identical
bosons. Compute the difference in free energy, ∆F = F+−F−, where F+ and F− are the free
energies of the bosons and fermions, respectively. Interpret the difference when kBT ≪ ∆

by enumerating the possible states. Consider the same potential well with the same ϵk and
degeneracies. Now, however, the well is in contact with a reservoir at temperature T and
chemical potential µ, such that the average number of particles in the well is maintained at
⟨n⟩ = 2. The number of particles in the well fluctuates around this mean value. (c)[6pt]
Determine the fugacity λ± ≡ exp(βµ±) for bosons (+) and fermions (−), including the
leading correction due to quantum statistics when g ≫ 1.

Hint: First find the fugacity at leading order, λ0. Then find the first correction λ = λ0 + δλ

iteratively. (d)[3pt] Compute the variance σ2
± in the number of particles in the well for

bosons (+) and fermions (−), including the leading correction due to quantum statistics:

σ2
±(T ) ≡

〈
(δn)2

〉
. (2)



Solution

(a) The single particle states are labeled by two integers s1 = (k1,m1) and m1 = 1 . . . g.
The s1 and s2 can’t be equal for fermions.

Z =
∑

s1,s2>s1

e−β(k1+k2)∆ (3)

=
1

2

∑
k1,k2

g2e−β(k1+k2)∆ − 1

2

∑
k1=k2

ge−β2k1∆ (4)

=
1

2
(gz1)

2 − 1

2
gz2 (5)

Here the partition function of the harmonic oscillator is

z1 ≡ z(∆) =
1

1− e−β∆
z2 ≡ z(2∆) =

1

1− e−2β∆
(6)

Then

F = −T lnZ =− T ln

[
1

2
(gz(∆))2 − 1

2
gz(2∆)

]
(7)

=− 2T ln(gz1)− T ln(2)− T ln(1− z2
gz21

) (8)

≃− 2T ln(gz1)− T ln(2) +
Tz2
gz21

(9)

(b) The Boson case has

Z =
1

2

∑
k1,k2

g2e−β(k1+k2)∆ +
1

2

∑
k1=k2

ge−β2k1∆ (10)

(11)

and
F+ = −T lnZ ≃ −2T ln(gz1)− T ln(2)− Tz2

gz21
(12)

Then
∆F = −2T

z2
gz21

(13)

In the low temperature limit the z2 and z1 are one. The mean energy is zero (since both
atoms are in k = 0) and F ≃ −TS = −2T/g. The entropy is simply counting. All atoms are
in the lowest energy level. There are g(g + 1)/2 ways to put two bosons into g open states
and g(g − 1)/2 ways to put two fermions into g open states. Thus we find

∆S = ln(g(g + 1)/2)− ln(g(g − 1)/2) ≃ 2

g
. (14)



(c) We will use the grand partition function formalism. The thing to recognize here is that
because the occupancy n̄/g ≪ 1 is low, classical statistics are a good approximation. To set
notation, the partition function is written

ZG =
∑
s

e−βEs+αNs , (15)

where α = µ/T .

The mean number of particles follows from the Bose-Einstein or Fermi-Dirac distribution
function:

n̄ = g
∑
k

1

eβϵk−α ∓ 1
= g

∑
k

λe−βϵk

1∓ λe−βϵk
(16)

where we defined the fugacity λ ≡ eα. This could be written in a somewhat more familiar
way:

n̄ =
∑
states

1

eβ(ϵk−µ) ∓ 1
(17)

Then since g is large here, the number of particles per quantum state is small, and we have
that the fugacity is very small, λ ≡ eα ≪ 1. This approximation is familiar from a classical
ideal gas. We can expand Eq. 16 in λ and perform the sum

n̄ ≃ g
∑
k

(λe−βϵk ± λ2e−2βϵk) = gλz1 + gλ2z2 . (18)

Thus the full equation which determines µ (or λ ≡ eβµ) is

n̄

gz1
= λ± λ2

z2
z1
. (19)

The first term on the right is small O(eα), while the second term is small squared O(e2α).
Solving at lowest order we have

λ0 =
n̄

gz1
(20)

and the full equation reads
λ0 = λ± ± λ2±

z2
z1
. (21)

Using the zero-th order solution we have approximately

λ0 ≃ λ± ± λ20
z2
z1
, (22)

and thus
λ± ≃ λ0 ∓ λ20

z2
z1
. (23)



(d) Then we can find the fluctuations

〈
δn2
〉
=
∂n̄

∂α
=g
∑
k

e−βϵk+α ± 2e2αe−2βϵk = gz1λ± 2gλ2z2 (24)

=gz1λ0 ± gλ20z2 (25)

=g

(
n̄

g

)(
1± n̄

g

z2
z21

)
(26)

Discussion: In the limit that T ≪ ∆ and we get the familiar result

〈
δn2
〉
= g

[
n̄

g

(
1± n̄

g

)]
. (27)

for the fluctuations of a Bose and Fermi gas. The difference between bosons and fermions is
approximately

∆σ2 =2n̄

(
n̄

g

z2
z21

)
(28)
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