
Comprehensive Examination
Department of Physics and Astronomy

Stony Brook University

Fall 2025 (in 4 separate parts: CM, EM, QM, SM)

General Instructions:

Three problems are given. If you take this exam as a placement exam, you must work on all
three problems. If you take the exam as a qualifying exam, you must work on two problems
(if you work on all three problems, only the two problems with the highest scores will be
counted).

Each problem counts for 20 points, and the solution should typically take approximately one
hour.

Use one exam book for each problem, and label it carefully with the problem topic and
number and your ID number.

Write your ID number (not your name!) on each exam booklet.

You may use, one sheet (front and back side) of handwritten notes and, with the proc-
tor’s approval, a foreign-language dictionary. No other materials may be used.



CLASSICAL MECHANICS 1

A boy on a swing

A boy of mass m stands on a swing and moves his body as shown in the figure. Every time
he is at the lowest point while swinging left, he quickly raises his center of mass by a small
distance b. Once he reaches the highest point on the left, he quickly lowers his center of
mass back and then keeps his position while swinging to the highest point on the right. In
each extremal position, the distance between the center of mass and the pivot point of the
swing is l. Assume that b << l, the swing angles ϕ are small, and that the swing period is
much longer than the time it takes him to change his body position.

(a)[6pt] Given an initial angle of ϕ0, calculate the extremal angle ϕ1 after half a period from
point 0 to 4. Ignore any friction for now.

(b)[6pt] Prove that over many swing cycles the energy of the swing grows exponentially
according to dE/dt = γE and determine the constant γ.

(c)[8pt] Now consider a more realistic situation in which there is tiny amount of air friction
proportional to the velocity of the child at his center of mass, f = αv. Assume weak damping,
find the value of α so that the swing returns to the same angle of ϕ0 after each swing cycle.

Hint: the swing angle of a weakly-damped pendulum follows: ϕ(t) = A cos(ωt)e−βt, with
β << ω. You can solve for ω and β.



Solution

(a) Consider half a period of swinging motion between points 0-1-2-3-4. From 0-1, energy
is conserved: E0 = E1.

mgl(1− cos(ϕ0)) = mv21/2 (1)

where ϕ0 is the initial angle. From 1-2, angular momentum is conserved:

mlv1 = m(l − b)v2 (2)

v2 =
v1l

(l − b)
(3)

From 2-3, again energy is conserved:

mv22/2 = mg(l − b)(1− cos(ϕ1)) (4)

With these we can obtain the relation between the angles:

mgl(1− cos(ϕ0))

(
l

l − b

)2

= mg(l − b)(1− cos(ϕ1)) (5)

1− cos(ϕ1) = (1− cos(ϕ0))

(
l

l − b

)3

(6)

The work done from 0 to 3 is the change of the potential energy at the extremals:

∆P13 = mg[l− (l− b) cos(ϕ1)]−mgl[1− cos(ϕ0)] = mgl[1− cos(ϕ0)][(
l

l − b
)2− 1]+mgb (7)

The ∆E can also be directly calculated from the work done between points 1 and 2. As the
child raises the center of mass to a radius of r, from conservation of angular momentum the
velocity is:

v(r) = v1l/r (8)

The force to raise the center of mass does a work which is

W =

∫ l

l−b

[
mv2(r)

r
+mg]dr =

1

2
mv21[(

l

l − b
)2−1]+mgb = mgl[1−cos(ϕ0)][(

l

l − b
)2−1]+mgb

(9)



We see that W = ∆P13.

From 3 to 4, the center of gravity is lowered by b. Finally, return to 0 from 4 to complete
one period, the total energy change is:

∆E = mgl[1− cos(ϕ0)][(
l

l − b
)2 − 1] = E0[(

l

l − b
)2 − 1] (10)

(b) Considering the swing has an approximately constant period of T = 2π
√
l/g, we can

estimate that the energy of the system follows:

dE/dt ≈ ∆E/T =
E

2π

√
g

l
[(

l

l − b
)2 − 1] (11)

Therefore the energy increases exponentially with:

α =
1

2π

√
g

l
[(

l

l − b
)2 − 1] (12)

(c) In the presence of friction the equation of motion for a swing with length r is (under
small swing angle):

mgϕ+ αr
dϕ

dt
+mr

d2ϕ

dt2
= 0 (13)

With ϕ = ϕ0 cos(ωt)e
−βt, we have:

mgϕ0 cos(ωt)e
−βt−αrϕ0[ω sin(ωt)+β cos(ωt)]e−βt+mrϕ0e

−βt[−ω2 cos(ωt)+2ωβ sin(ωt)+β2cos(ωt)] = 0

(14)
Hence:

mg − αrβ −mrω2 +mrβ2 = 0 (15)

−αrω + 2mrωβ = 0 (16)

From these equation we obtain:

β =
α

2m
(17)



ω =

√
g

r
− α2

4m2
(18)

Applying the above to the problem here, the swing reaches vertical position 1 when t = t1 =
π
2ω

with ω =
√

g
l
− α2

4m2 . There the velocity of the center of mass is

v1 = l
dϕ

dt
= −lϕ0ωe

−βπ
2ω (19)

from 1 to 2, the angular velocity becomes:

dϕ

dt
=

v2
l − b

=
v1l

(l − b)2
= −ϕ0ω

l2

(l − b)2
e−

βπ
2ω (20)

Generally the angular velocity of a non-driven swing is:

dϕ

dt
= −ϕ0[ω sin(ωt) + β cos(ωt)]e−βt (21)

Matching the angular momentum with that of the continued motion ϕ′ ∝ ϕ′
0 (− sinω′(t− t1)) e

−β(t−t1)

for t > t1
dϕ′

dt
= −ϕ′

0ω
′ = −ϕ0ω

l2

(l − b)2
e−

βπ
2ω (22)

where ω′ =
√

g
l−b

− α2

4m2 , and

ϕ′
0 = ϕ0

ω

ω′
l2

(l − b)2
e−

βπ
2ω (23)

Hence from 2 to 3, the motion of the swing follows:

ϕ′ = ϕ0
ω

ω′
l2

(l − b)2
(− sinω′(t− t1)) e

−βπ
2ω

−β(t−t1) (24)

The extremal swing angle ϕ′
3 is reached when dϕ

dt
= 0 which, with β << ω, happens at when

t = t3 = t1 +
π
2ω′ :

ϕ′
3 = −ϕ0

ω

ω′
l2

(l − b)2
e−

βπ
2ω

− βπ
2ω′ (25)

From 3 to 4, the swing remains stationary. From 4 back to 0, the swing motion follows:

ϕ = ϕ′
3 cosω(t− t3)e

−β(t−t3) (26)

and reaches back to the original ϕ0 at t = t4 = t3 +
π
ω
:

ϕ0
ω

ω′
l2

(l − b)2
e−

βπ
2ω

− βπ
2ω′−

βπ
ω = ϕ0 (27)



Hence we get the equation for α:

ω

ω′
l2

(l − b)2
e−β( 3π

2ω
+ π

2ω′ ) = 1 (28)

ln

[
ω

ω′
l2

(l − b)2

]
=

1

2
βπ

(
3

ω
+

1

ω′

)
=
απ

4m

(
3

ω
+

1

ω′

)
(29)

and
α =

4mωω′

π(3ω′ + ω)
ln

[
ω

ω′
l2

(l − b)2

]
(30)

The answer can be expanded in the small difference (ω′/ω − 1) and b/l:

α ≈ mω

π
ln

[(
1− gb

2ω2l2

)(
1 + 2

b

l

)]
≈ mω

π

[
− gb

2ω2l2
+ 2

b

l

]
≈ mω

π

3b

2l
(31)

where the higher-order in the difference between ω and ω′ has been neglected. In the right-
most approximation, the difference between ω2 and g/l has also been neglected.



CLASSICAL MECHANICS 2

Orbiting stars

In this problem, we model a binary star system as two point-like bodies of mass M1 and M2

separated by distance d orbiting around each other in circular orbits.

(a)[6pt] Write an expression for total angular momentum in terms of the parameters given
and any fundamental constants.
(b)[2pt] Explain why angular momentum is conserved (without using an equation).

In a simple model of mass transfer, the masses change adiabatically in time so that dM1/dt =

−dM2/dt = α, where α > 0 is constant. Suppose that after some time T (before the second
star is completely consumed), the mass transfer ends and the orbit remains circular.

(c)[6pt] What is the distance between the bodies at times t ≥ T?
(d)[6pt] What is the change in energy after the mass transfer?



Solution

(a) The angular momentum of the system can be shown to be

L = µd2ω, (1)

where µ = (M1M2)/(M1 +M2) is the reduced mass and ω is the angular frequency of the
orbit.

The angular frequency can be determined from the force law. Specifically,

r̈ = r̈2 − r̈1 (2)

=
1

M2

F2 −
1

M1

F1 (3)

= −
(

1

M2

+
1

M1

)(
GM1M2

r2

)
r

r
(4)

= −(M1 +M2)G

r3
r (5)

where r1,2 denote the position vectors of the bodies, r their relative position, and F2(1) the
force on mass 2(1) from mass 1(2). G denotes the gravitational constant. Since for circular
motion, r̈ = −ω2r, it follows that:

ω =

√
(M1 +M2)G

r3
(6)

Hence

L = µ
√

(M1 +M2)Gd, µ =
M1M2

M1 +M2

(7)

(b) Angular momentum is conserved because there is no net torque on the system (all the
forces are internal to the system and central).

(c)

Using the fact that the angular momentum is conserved and the total mass M1+M2 remains
constant, it is evident that the product µf

√
df = µi

√
d remains constant, which implies

df =

(
µi

µf

)2

d =

(
M1M2

M1fM2f

)2

d, (8)

where i, f indicate initial (t = 0) and final (t = T ) values. Thus

df =

[
M1M2

(M1 + αT )(M2 − αT )

]2
d (9)



(d)

For a circular orbit:
E =

L2

2µr2
− GM1(t)M2(t)

r
(10)

Using the value of angular momentum in Eq. (7),

E =
µ (M1(t) +M2(t))G

2r
− GM1(t)M2(t)

r
= −GM1(t)M2(t)

2r
(11)

Hence,

Ef − Ei = −G
2

(
M1(t)M2(t)

df
− M1M2

d

)
=
GM1M2

2d

(
1− M1fM2f

M1M2

d

df

)
(12)

Using df from Eq. (9),

Ef − Ei =
GM1M2

2d

(
1−

[
M1fM2f

M1M2

]3)
=

GM1M2

2d

(
1−

[
(M1 + αT )(M2 − αT )

M1M2

]3)
(13)

If the smaller star is consumed by the larger one, M1 > M2, it would appear that the total
(kinetic + potential) energy is increased. However, this does not take into account the energy
of gravitational attraction within the stars themselves, Uself ∝ (−GM2/R), where their radii
R1,2 < d.



CLASSICAL MECHANICS 3

Lagrange points – a restricted three body problem

Consider a solar system with one planet of mass Mp and a star of mass Ms separated by
distance R. They move in the circular orbit around the center of mass in the (x̂, ŷ) plane. A
small third body, a satellite, which also moves only in the (x̂, ŷ) plane, has negligible mass
and does not impact the equation of motion of the star and the planet.

(a)[3pt] Find the orbital period of the planet and star motion neglecting the effects of the
satellite.

Now conider the reference frame co-rotating with the star and the planet such that they stay
on the x̂′ axis and their center of mass is at (x′, y′) = (0, 0).

(b)[4pt] Write the Lagrangian for the motion of the satellite in the co-rotating reference
frame using the new coordinates (x′, y′). Find the canonical momentum, the Hamiltonian,
and write the equations of motion in terms of (x′, y′), (ẋ′, ẏ′), and derivatives of the effective
potential U ′(x′, y′).

The Lagrange point L2 is one of the equilibrium points in line with the star and the planet
with y′ = 0 (see the figure).

(c)[6pt] Using the effective potential, write the condition for the Lagrange point L2. As-
suming that the planet is much lighter than the star, show that the distance from the planet
to L2 is

d ≈ R
(α
3

)1/3
≪ R ,

where α =Mp/(Ms +Mp) ≪ 1.

(d)[7pt] Would the satellite be dynamically stable at L2? If yes, prove it. If not, estimate
how fast the satellite would fall out of L2 in the case of Earth/Sun system neglecting all
other bodies in the Solar system.
Hint: Expand the effective potential U ′(x′, y′) to the lowest relevant order and analyze the
equations derived in part (b). Here and above, you may find useful the following Taylor series

(1 + ε)−2 = 1− 2ε+O(ε2) , (1 + ε)−1/2 = 1− 1

2
ε+

3

8
ε2 +O(ε3) .



Solution

(a) The bound two-body system would rotate around the common center of mass on the
line between them at distances αR and (1− α)R from the star and the planet. The period
of the circular motion is most easily found using the reduced mass of the system µ =

(M−1
s +M−1

p )−1,

µω2R =
GMsMp

R2
=⇒ ω =

√
GM

R3
.

where M =Ms +Mp and the period T = 2π/ω.

(b) The Lagrangian for the satellite is most easily written in the inertial (non-rotating)
reference frame first,

L(r⃗, v⃗) = T (v⃗)− U(r⃗) =
1

2
mv⃗2 +

GMsm

|r⃗ − r⃗s(t)|
+

GMpm

|r⃗ − r⃗p(t)|

where r⃗s(t) and r⃗p(t) are time-dependent positions of the star and the planet. Only the
kinetic term is affected when changing to the co-rotating RF, and it will yield the Coriolis
and the centrifugal forces below. Using the angular velocity vector ω⃗ = ωẑ ⊥ (x̂, ŷ) to
specify the rotation, the inertial-frame velocity can be expressed as v⃗ = v⃗′ + ω × r⃗′ and the
Lagrangian

L =
1

2
m(v⃗′)2 +mv⃗′ · (ω⃗ × v⃗′)− U ′(r⃗′)

where the new effective potential is

U ′(r⃗′) = −1

2
mω2(r⃗′)2 − GMsm

|r⃗′ − r⃗′s|
+
GMpm

|r⃗′ − r⃗′p|

and where r⃗′s = (−αR, 0) r⃗′p = ((1− α)R, 0) are now constant positions of the star and the
planet. The satellite’s canonical momentum is

p⃗′ =
∂L
∂v⃗′

= mv⃗′ +mω⃗ × r⃗′

and the Hamiltonian

H = p⃗′ · v⃗′ − L =
1

2
mv⃗′2 + U ′(r⃗′) =

1

2m
(p⃗′ −mω⃗ × r⃗′)2 + U ′(r⃗′)

The equations of motion can be derived from either the Lagrangian for ˙⃗v′ = (ẍ′, ÿ′),

d

dt
(mv⃗′ +mω⃗ × r⃗′) =

∂L
∂r⃗′

= mv⃗′ × ω⃗ − ∂U ′

∂r⃗′
,

m ˙⃗′v = 2mv⃗′ × ω⃗ − ∂U ′

∂r⃗′

or from the Hamiltonian for ˙⃗p′.



(c) For the satellite to remain static at any point in the co-rotating RF, its velocity must
be v⃗′ = 0 = const and its effective potential satisfy ∂U ′

∂r⃗′
= 0. For L2, the y′-dependence is

trivial because of symmetry, and the x′ dependence requires

0 =
∂

∂x′

[
−1

2
ω2x′2 − GMs

x′ + αR
− GMp

x′ − (1− αR)

]
=

∂

∂d

[
−1

2
ω2((1− α)R + d)2 − GMs

R + d
− GMp

d

]
,

= −ω2((1− α)R + d) +
GMs

(R + d)2
+
GMp

d2

where x′ > (1 − α)R and d > 0. In the case of α ≪ 1 and d ≪ R, expanding the r.h.s. in
δ = d/R and using ω2R = GM/R2 we get

0 ≈ ω2R
[
−(1− α)− δ + (1− α)(1− 2δ) +

α

δ2

]
=⇒ δ3 ≈ α

3− 2α
≈ α/3

or d = Rδ = R(α/3)1/3.

(d) This part is a little bit tedious. One can proceed by either calculating the second
derivatives of U ′ with respect to (x′, y′) around the L2 point ([1 − α + δ]R, 0) or, more
thoughtfully, find the second-order terms in the series

U ′(x′, y′)/m = U([1− α + δ]R + a, b)/m

= −1

2
ω2
[
((1− α)R + d+ a)2 + b2

]
− GM(1− α)√

(R + d+ a)2 + b2
− GMα√

(d+ a)2 + b2

because it is already known that all the first-order terms cancel. Using the provided (or
hopefully remembered) Taylor series for (1 + ε)−1/2 and some algebra yields

U ′/m ≈ (U ′/m)L2 + ω2(−9

2
a2 +

3

2
b2)

so it is obvious that the effective potential as a saddle point at L2 and it is a point of unstable
equilibrium.

One can roughly estimate the lifetime at L2 using the negative eigenvalue of the potential
Hessian in the direction x̂′, τ ∝ 1/ωx = 1/(3ω) i.e. 1/3 of a year. A more careful approach
should take into account the Coriolis force ∝ v⃗′× ω⃗, which results in the following equations
of motion {

ä = 9ω2a+ 2ωḃ

b̈ = −3ω2b− 2ωȧ
.

Looking for solution in the form (a0λ, b0λ)e
λt results in the eigenvalue equation

det

(
λ2 − 9ω2 −2λω

2λω λ2 + 3ω2

)
= 0 ⇐⇒ λ4 − 2ω2λ2 − 27ω4 = 0

and two eigenvalues λ2 = ω2(1±2
√
7). The largest real eigenvalue λ = ω

√
(1 + 2

√
7) ≈ 2.5ω

yields slightly longer L2 lifetime of about ≈ (2.5)−1 = 0.4 year.



ELECTROMAGNETISM 1

Mutual inductance

Consider a static situation in which electromagnetic fields and their sources (charges and
currents) do not vary in time.
(a)[3pt] By using Maxwell’s equations and expressing the magnetic induction as B = ∇×A,
show that the Cartesian components of the vector potential A obey Poisson’s equation,
−∇2A = µ0 J, where J is the current density and ∇ · A = 0 (i.e., the Coulomb gauge is
adopted).
(b)[3pt] Explain why the vector potential due to the current density is given by

A(r) = C1

∫
d3r′

J(r′)

|r− r′|
,

and determine the necessary constant C1 .
(c)[4pt] When the current density is held steady by some external source, the equilibrium
can be studied using the magnetostatic energy E ,

E [J] =
∫
d3r

[
1

2µ0

|∇×A|2 − J ·A
]
,

where the first term on the right hand side is the energy of the magnetic field and the second
term accounts for the work done maintaining the currents. Show that (upon neglecting the
surface terms) E can be expressed as

E [J⃗ ] = −C2

∫
d3r J ·A ,

and determine the necessary constant C2 .
(d)[6pt] It is now specified that the current density arises from a collection of N nonin-
tersecting closed-loop filaments, and that filament n carries current In along spatial path
Rn(s), where s is a parameter along the filament. Show that the interaction energy among
the current loops Eint is given by

Eint[{In}] = − 1

2

N∑
n=1

N∑
m=1

n ̸=m

Ln,m In Im ,

where the coefficients of induction Ln,m are given by

Ln,m = C3

∫
ds

∫
dt

Ṙn(s) · Ṙm(t)

|Rn(s)−Rm(t)|
,

in which the overdots represent derivatives with respect to the parameter and the integrals
are taken around the loops. Obtain the necessary constant C3 . [Note: A filament is defined



to be a single, threadlike object.]
(e)[6pt] A pair of wires lie parallel to one another, separated by a distance Σ. They carry
currents I1 and I2, flowing in the same direction. Show that the interaction energy of the
two-wire system is given by Eint = −C4 I1 I2 Λ ln (2Λ/Σe), provided the length of the system,
Λ, is much greater than Σ, and determine the necessary constant C4 .

You may use the following result without deriving it:∫ W/2

−W/2

du

∫ W/2

−W/2

dv
1√

1 + (u− v)2
≈ 2W ln(2W/e), for W ≫ 1.

(f)[6pt] With reference to the magnetic field and your answer to part (e), explain whether
or not like currents attract.



Solution

(a) Maxwell’s equations (in SI units) read

∇ · E =
ρ

ϵ0
∇ ·B = 0

∇×B = µ0 J+
1

c2
∂t E ∇× E = − ∂t B

For static situations, ∂t → 0, so that

∇ · E =
ρ

ϵ0
∇ ·B = 0

∇×B = µ0 J ∇× E = 0

As ∇ · B = 0, we can introduce the vector potential A such that B = ∇ × A. Then
the Ampère-Maxwell law ∇ × B = µ0 J becomes ∇ ×∇ ×A = µ0 J. Now, for Cartesian
components of F we have the identity ∇ × ∇ × F = ∇(∇ · F) − ∇2F, so the Cartesian
components of A obey ∇ (∇ ·A)−∇2A = µ0 J. Then, in Coulomb gauge (i.e., ∇ ·A = 0),
the Ampère-Maxwell equation for the Cartesian components of A becomes

−∇2A = µ0 J .

Thus, each component of A obeys Poisson’s equation, sourced by the corresponding Cartesian
components of J.

(b) The solution for A is therefore given by the analog of Coulomb’s law for point charges,
together with superposition, and thus reads

A(r) = C1

∫
d3r′

1

|r− r′|
J (r′) , C1 =

µ0

4π
.

(c) The E energy is given by

E = −
∫
d3r
{
J ·A− 1

2µ0

|∇×A|2
}
.

To arrive at the specified form, we replace one factor of ∇×A by B to obtain

E = −
∫
d3r
{
J ·A− 1

2µ0

B · (∇×A)
}
.

We then integrate by parts and drop the surface term to arrive at

E = −
∫
d3r
{
J ·A− 1

2µ0

(∇×B) ·A
}
.



Finally, we use the Ampère-Maxwell law, ∇×B = µ0 J, to eliminate ∇×B in favor of J,
thus arriving at

E = −C2

∫
d3r J ·A, C2 =

1

2
.

(d) In the equation for E in terms of J and A, we use the specified filamentary current
distributions to make the following replacements:

J(r) →
N∑

n=1

In

∫
ds Ṙn(s) δ

(
r−Rn(s)

)
,

A(r) =
µ0

4π

∫
d3r′

1

|r− r′|
J (r′) → µ0

4π

N∑
m=1

Im

∫
dt

Ṙm(t)

|r−Rm(t)|
.

Then, omitting the self-interaction (i.e., n = m) terms, and using the delta function to
perform the volume integration, we arrive at interaction contribution to the energy Eint ,
expressed in terms of the coefficients of induction Ln,m , i.e.:

Eint =
1

2

N∑
n=1

N∑
m=1

n̸=m

Ln,m In Im ,

Ln,m = C3

∫
ds

∫
dt

Ṙn(s) · Ṙm(t)

|Rn(s)−Rm(t)|
, C3 =

µ0

4π
.

(e) Let the wires run along the z axis and be displaced from one another along the x axis.
Then we may choose to write R1(s) = ez s and R2(t) = ez t + ex Σ, where {ex, ey, ez} are
the Cartesian basis unit vectors. For the coefficients of induction, we need the ingredients
Ṙ1(s) · Ṙ2(t) = 1 and |R1(s)−R2(t)|2 = Σ2+(s− t)2. The integrals over the filaments then
give

Ln,m =
µ0

4π

∫ Λ/2

−Λ/2

ds

∫ Λ/2

−Λ/2

dt
1√

Σ2 + (s− t)2
.

Rescaling the integration variables from s and t to u ≡ s/Σ and v ≡ t/Σ gives the equivalent
formula:

Ln,m =
µ0

4π
Σ

∫ Λ/2Σ

−Λ/2Σ

du

∫ Λ/2Σ

−Λ/2Σ

dv
1√

1 + (u− v)2
,

to which we may apply the approximate result provided in the problem statement, thus
obtaining:

Eint ≈ C4 I1 I2 Λ ln

(
2Λ

eΣ

)
, C4 =

µ0

2π
.



(f) For like currents, I1 and I2 have the same sign as one another. The energy therefore
decreases with decreasing separation Σ, indicating that the currents attract one another. In
terms of field energy, this is because in the region between the wires the Ampère magnetic
fields due to the like currents tend to cancel (rather than reinforce) one another, leading to
a more pronounced lowering of the field energy for closer wires.



ELECTROMAGNETISM 2

Scattering from a Dielectric Sphere
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radiated 
light

Consider a monochromatic beam of light propagating in the z-direction. The light is linearly
polarized along the x-axis, with polarization vector ε0 = x̂. The wave number is k = ω/c,
and the electric field has amplitude E0. This light is incident on a small dielectric sphere of
radius a and dielectric constant ε. Assume ka≪ 1.

You may assume without proof that a dielectric sphere placed in an approximately uniform
electric field E develops an induced dipole moment given by:

p = 4πa3
(
εr − 1

εr + 2

)
E,

where εr = ε/ε0 is the relative permittivity.

(a)[3pt] Determine the incident photon flux, i.e., the average number of photons per unit
area per second arriving at the sphere.

(b)[5pt] Determine the total radiated power P by the dielecric sphere.

(c)[3pt] Determine the scattering cross-section σ = P/I, defined as the ratio of the radiated
power P to the incident intensity I (power per unit area). Alternatively, it is the ratio of
the number of photons scattered per second to the incident photon flux. Is σ large or small
compared to the geometric cross section of the sphere? Explain the answer.

(d)[4pt] Consider a small photon counter with collecting area A positioned at distance R
from the dielectric sphere at an angle θ in the xz-plane (see the figure). The detector is
located very far from the sphere and lies outside the direct path of the incoming light.

Determine the average number of photons detected per second.

(e)[5pt] Now consider two identical small spheres placed along the z-axis, separated by a
distance b≫ a, where a is the radius of each sphere. The separation b is comparable to the
wavelength of the incident light, kb ∼ 1.



Determine how the second sphere modifies the count rate found in part (c). Assume that
the radiated field from one sphere does not affect the dipole moment of the other.

Hint: The dipole moments of the two spheres are not in phase. Begin by determining the
dipole moments of both spheres.



Solution

Preliminaries:

The solution will use Heaviside-Lorentz units. With this system of units (which is common
in nuclear and particle physics), a plane wave of light has E = B and the Poynting vector is
§ = cE ×B. The squared field E2 and B2 have units of energy per volume.

The fields have a harmonic time dependence and we will use a complex notation, e.g. for a
signal V (t), we have

V (t) = Vωe
−iωt = |Vω|e−iωt+φ . (1)

It is understood that the physical signal is the real part of this expression:

Vphys(t) = ReV (t) =
1

2
(V (t) + V ∗(t)) = |Vω| cos(ωt− φ) . (2)

The time average of two harmonic fields is

⟨Vphys(t)Wphys(t)⟩ ≡
1

4
(V (t)W ∗(t) + V ∗(t)W (t)) =

1

4
[VωW

∗
ω + V ∗

ωWω] =
1

2
Re [V (t)W ∗(t)]

(3)
So, in what follows you will see expressions such as:

⟨Sphys⟩ ≡
1

2
Re [cE ×B∗] and

〈
p2
phys

〉
=

1

2
|p|2 (4)

(a) The incoming fields fields are

E =E0 e
−iωt+ikx x̂ , (5)

B =E0 e
−iωt+ikx ŷ , (6)

and thus Eω = E0 e
ikx x̂ etc. The time averaged Poynting vector records the time-averaged

energy per area per time and reads

⟨ẑ · Sphys⟩ =
c

2
Re[E(t)×B∗(t)] =

c

2
E2

0 . (7)

Dividing by the energy ℏω of each photon, we get the number of photons per area per time

Φ =
⟨ẑ · Sphys⟩

ℏω
=

c

2ℏω
E2

0 . (8)

(b) The (complex) dipole moment as a function of time is

p(t) = 4πa3
(
ϵr − 1

ϵr + 1

)
E0e

−iωt x̂ ≡ p0e
−iωt x̂ . (9)



where we defined the real number

p0 ≡ 4πa3
(
ϵr − 1

ϵr + 1

)
E0 . (10)

The time average power passing through through a sphere of (large) radius r at time t is

P (t, r) =

(
1

6πc3

)
1

2
|p̈(tr)|2 . (11)

Here the dipole moment is evaluated at the retarded time

tr = t− r

c
, (12)

which is the time when the light was emitted in order to arrive at the sphere of radius r at
time t. However, this distinction is just an irrelevant phase in this case

p̈(tr) = −ω2p0e
−iω(t−r/c)x̂ , and |p̈(tr)|2 = ω4p40 , (13)

but will be significant in part (d). Thus

P =
4π

3

a6

c3
E2

0

(
ϵr − 1

ϵr + 1

)2

ω4 . (14)

(c) Dividing by the incoming intensity we find

σ =
P

c|E2
0 |/2

=
8π

3

a6ω4

c4

(
ϵr − 1

ϵr + 1

)2

. (15)

We see that the cross section is of order

σ ∼ (πa2)(ka)4 , (16)

where k = ω/c. In the dipole approximation the wavelength is large compared to a and
thus ka≪ 1 . We see that the dipole cross section is much smaller than the geometric cross
section. Physically this is because the long wavelength barely resolves the small sphere.

(d) The electric field in the radiation zone is at the observation time t and position r = rn̂

is

Erad(t, r,n) =
1

4πrc2
(−p̈T (tr)) . (17)

Here n̂ is the unit vector pointing from the origin to the observation point, r = rn (see
figure). The transverse dipole moment is

pT = p− (p · n̂)n̂ , (18)



which is the vector component of p, which is transverse to n̂ (see figure). From the figure

pT (t) = p0e
−iωt cos(θ)ê1 (19)

Here e1 is the unit vector parallel to pT , which is shown in the figure.

The dipole is evaluated at the retarded time tr, which is is the observation time minus the
time it takes travel from the dipole to the observation point

tr = t− |r − r0|
c

≃ t− r

c
+

n̂ · r0
c

(20)

Here r0 is the position of the dipole. For the case of one dipole we have r0 = 0. Thus

p̈T (tr) = −ω2p0e
−iω(t−r/c) cos(θ)ê1 |p̈T |2 = ω4p20 cos

2(θ) (21)

The time averaged Poynting vector along the “line of sight" n̂ is〈
n̂ · Ŝphys

〉
=
c

2
|Erad|2 =

1

32π2R2c3
p20 ω

4 cos2 θ . (22)

Multiplying by the collecting area and dividing by the energy of each photon ℏω, we find
the count rate

Γ =

〈
n̂ · Ŝphys

〉
A

ℏω
∝ ω3 A

R2

p20
c3

cos2 θ . (23)

From a physical perspective, it is clear that the count rate should vanish at θ = π/2.
In this case the oscillating currents J ∼ ∂tp are parallel to the direction of the outgoing
radiation, i.e. for θ = π/2 in the oscillating current is in the x̂ direction (imagine Fig 1 for
θ = π/2). However, the outgoing radiated electric field must be transverse to the direction
of propagation. There is no components of the oscillating currents which are transverse to
n, which can drive the transverse electromagnetic wave. Thus the resulting radiation is zero.

(e) The two dipoles A and B each contribute to the radiation field

Erad(t, r,n) =
−1

4πrc2
[
(p̈A

T (t
A
r ) + (p̈B

T (t
B
r )
]
. (24)

The first dipole is driven by the field at x = 0

pA(t) = p0e
−iωt+ikx

∣∣
x=0

x̂ = p0e
−iωt x̂ . (25)

The second dipole is driven by the field at x = b and is out of phase due to the displacement:

pB(t) = p0e
−iωt+ikx

∣∣
x=b

x̂ = p0e
ikbe−iωt x̂ . (26)
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FIG. 1. Geometry of the radiation.

In addition, the retarded times are different as the propagation times between the two dipoles
and the observation point are different. The retarded time of dipole A is tAr = t − r/c, but
the retarded time of dipole B is

tBr = t− r

c
+

n̂ · r0
c

= t− r

c
+
b

c
cos θ . (27)

The difference is in propagation times has a clear geometric significance

tBr − tAr = (b/c) cos θ , (28)

which is studied in Fig. 2.

Putting together the ingredients, we have as before

pA(tAr ) = p0e
−iω(t−r/c) x̂ , (29)

while for B

pB(tBr ) =p0 e
ikb e−iω(t−r/c+b/c cos θ) x̂ , (30)

= eikb(1−cos θ)
[
p0e

−iω(t−r/c) x̂
]
. (31)

Thus [
pA(tAr ) + pB(tBr )

]
= pA(tAr )(1 + eikb(1−cos θ)) , (32)

The count rate is modified by the interference

Γ(d) = Γ(c)|1 + eikb(1−cos θ)|2 = Γ(c) [2 + 2 cos(kb(1− cos θ))] . (33)
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FIG. 2. The distance that the light from dipole A (the left circle) needs to travel to the observation

point is longer by b cos θ than for dipole B (the right circle). Thus, the retarded time (sometimes

called the emission time) of dipole B is later by (b cos θ)/c so that the two signals arrive at the

observation point at the same time.



ELECTROMAGNETISM 3

Reflection from plasma

In this problem, we will consider electromagnetic waves propagating in and reflected from
the boundary of a region filled with plasma. Consider non-relativistic ionized gas consisting
of light particles having mass m and charge q with number density n as well as heavy
particles (atoms) with the same density but carrying charge (−q), so that the whole gas is
electrically-neutral. The motion of the atoms can be neglected.

(a)[4pt] Describe the motion of the light charges in presence of electric field E⃗(r, t) =

E⃗0e
−iωt. Calculate the polarization density of the plasma P⃗ = qnr⃗ where r⃗ is the displace-

ment of the light charges from the equilibrium in the absence of electric field.

(b)[4pt] Calculate the phase velocity vph(ω) of an electromagnetic wave with frequency ω

propagating through the plasma. Express your answer using the plasma frequency ωp =√
nq2/mε0. Hint: one way to do it is to use the previous section result to evaluate the

(relative) frequency-dependent dielectric permittivity ε(ω) = 1 + χr(ω) of the plasma, where
χ(ω) is the (relative) electric susceptibility, P⃗ = χ(ω)ε0E⃗.

(c)[2pt] Calculate the group velocity vg(ω); at which frequencies electromagnetic waves can
freely propagate through plasma? What happens at the other frequencies?

Now consider a plane wave E⃗(z, t) = E0ix̂e
ikz−iωt traveling in vacuum (z < 0) and incident

on the boundary of plasma (z > 0) at z = 0.

(d)[5pt] For the frequencies at which the wave can propagate through the plasma, find the
electric and magnetic fields in the reflected and transmitted waves. Compute the reflection
coefficient R = Energy incident

Energy reflected and sketch it as a function of ω.

(e)[5pt] For the frequencies at which the wave cannot propagate through the plasma, calculate
the phase shift δ of the reflected wave, Er = |E0r|e−ikz−iωt+iδ, and sketch it as a function of
ω.



Solution

(a) In the presence of oscillating electric field, the light charges will also oscillate with the
same frequency. Writing the dynamic equation for a single charge’s displacement r⃗ = r⃗0e

−iωt

m¨⃗r = qE⃗ =⇒ r⃗(0) = − q

mω2
E⃗(0) ,

(the relation holds both for the amplitudes and the time-dependent complex values) hence
the polarisation density P⃗ = nqr⃗ = P0e

−iωt is

P⃗(0) = nqr⃗(0) = − 1

ω2

nq2

m
E⃗(0) = −

ω2
p

ω2
ε0E⃗(0)

(b) The electric displacement vector D⃗ = ε0E⃗ + P⃗ yields the dielectric permittivity

ε(ω) = 1−
ω2
p

ω2

and in absence of magnetic effects the phase velocity is reduced by n(ω) =
√
ε(ω) ,

vph(ω) =
ω

k(ω)
=

c√
1− ω2

p/ω
2

The wave can propagate only if ω > ωp. If ω < ωp, the wave can exist only as a special kind
of standing wave with amplitude exponentially decreasing away from the plasma boundary.

(c) The group velocity vg(ω) = dω/dk is calculated using k(ω) = ω/vph(ω) = (ω/c)
√
1− ω2

p/ω
2:

vg(ω) =

(
dk

dω

)−1

= c
√

1− ω2
p/ω

2 .

For ω > ωp the group velocity vg < c as expected but for ω < ωp the velocity is imaginary
and the wave cannot propagate.

(d) Using the relation between the electric and magnetic fields k⃗×E⃗ = ωB⃗ in any plane wave
{E⃗, B⃗} ∝ eik⃗·r⃗−iωt, the field amplitudes in the incident, reflected, and transmitted waves

E⃗i = E0ix̂e
ikz−iωt B⃗i =

k

ω
E0iŷe

−ikz−iωt

E⃗r = E0rx̂e
−ikz−iωt B⃗r = −k

ω
E0rŷe

−ikz−iωt

E⃗t = E0tx̂e
ik2z−iωt B⃗t =

k2
ω
E0tŷe

ik2z−iωt

can be matched as
E0i + E0r = E0t

k
ω
E0i − k

ω
E0r =

k2
ω
E0t



where k = ω/c and k2 = k
√

1− ω2
p/ω

2 is the wave number in the plasma. Solving the above
equations yields

E0t =
2

1 + k2/k
E0i , E0r =

1− k2/k

k2/k + 1
E0i ,

and the reflection coefficient

R(ω) =

∣∣∣∣E0r

E0i

∣∣∣∣2 =
∣∣∣∣∣∣
1−

√
1− ω2

p/ω
2

1 +
√

1− ω2
p/ω

2

∣∣∣∣∣∣
2

For small frequencies at and below ωp, the reflection is complete R(ω ≤ ωp) = 1. For large
frequencies, expanding in ωp/ω yields

R(ω ≫ ωp) ≈
(ωp

2ω

)4
(e) The relations from the previous part hold also for ω < ωp but now the wave number
k2 = i

√
ω2
p/ω

2 − 1 is complex, and the sign is chosen such that the wave amplitude decays
exponentially with z. Using the relation between the amplitudes on the boundary, the phase
shift can be determined as

δ(ω) = arg
E0r

E0i

= arg
1− i

√
ω2
p/ω

2 − 1

1 + i
√
ω2
p/ω

2 − 1
= −2 arctan

√
ω2
p/ω

2 − 1

Taking the interesting limits, we get

δ(ω → 0) −→ −π , δ(ω → ωp) −→ 0 .

Both R(ω) and δ(ω) are sketched below. As long as the limits were shown correctly, the
sketches counted for the full score. It is also instructive to observe that R = 1 (full reflection)
for ω < ωp and δ = 0 (E⃗i and E⃗r co-aligned) for ω > ωp.
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QUANTUM MECHANICS 1

Interaction representation and rotating-wave approximation

For many quantum systems, a Hamiltonian H can be separated into H0 + V , where H0 is
the main non-interacting (“free”) Hamiltonian and perturbation V describes interaction. To
simplify the time evolution of the usual Schrödinger wave function |ψS⟩

iℏ
d

dt
|ψS(t)⟩ = H|ψS(t)⟩ ,

the so-called interaction-representation wave function |ψI(t)⟩ is defined that evolves only due
to the perturbation V :

iℏ
d

dt
|ψI(t)⟩ = VI(t)|ψI(t)⟩ , where VI(t) ≡ eiH0t/ℏV (t)e−iH0t/ℏ, (1)

and at the reference time t = 0 matches the Scrhodinger wave function |ψI(0)⟩ = |ψS(0)⟩.

(a)[3pt] What is the relation between the wavefunctions |ψI(t)⟩ and |ψS(t)⟩ ?

(b)[3pt] Suppose a two-state atom interacts with a classical field that oscillates with fre-
quency ω and drives transition between the two atom states. Such atom can be described
by the following Hamiltonian

H = H0 + V (t) , H0 =
ℏωs

2
σz , V (t) = gσx cos(ωt) ,

where σx,y,z denote the usual Pauli matrices. Use Eq. (1) to derive the explicit form of the
field term VI(t) in the interaction representation. Does VI(t) commute with VI(t′) if t′ ̸= t?

Now assume that the frequencies ωs and ω are much larger than all the other frequencies
in the evolution of |ψI(t)⟩, specifically g/ℏ and the “detuning” ∆ ≡ (ω − ωs). In this case,
one can make the so-called “rotating wave” approximation by neglecting all the terms in the
evolution equation that oscillate with large frequencies on the order of ωs and ω, and keep
only the terms with small frequencies g/ℏ and ∆.

(c)[3pt] Write down the evolution equation for |ψI(t)⟩ using VI(t) obtained above and
simplify it using this rotating-wave approximation.

(d)[4pt] The interaction term VI(t) in the rotating wave approximation derived above is in
general time-dependent. Perform a unitary transformation K(t) on |ψI(t)⟩ so that the evo-
lution of K|ψI(t)⟩ ≡ |χ(t)⟩ is governed by time-independent term V ′

I , iℏ ∂
∂t
|χ(t)⟩ = V ′

I |χ(t)⟩,
and find V ′

I .

(e)[5pt] In this form, the time evolution of the state of the atom

|χ(t)⟩ =

(
a(t)

b(t)

)



can be found explicitly, e.g., by evaluating the time evolution operator U(t) = e−iV ′
I t/ℏ. Find

a(t) and b(t) with an arbitrary initial condition a(0) = a0 and b(0) = b0.

(f)[2pt] Simplify expression obtained in (e) to the situation when the atom is initially in
the ground state, b0 = 1, to find the probability p0(t) that it remains in the ground state
at later times t. (Note that the transformations between the different forms of the atom
wavefunctions, |ψS(t)⟩, |ψI(t)⟩, and |χ(t)⟩, do not affect the occupation probabilities of the
atomic states.)

You may find useful the standard relation

ei(σ⃗·n̂)A = cosA+ i(σ⃗ · n̂) sinA

where σ⃗ = (σx, σy, σz) and n̂ = (nx, ny, nz) is an arbitrary unit vector, n2
x + n2

y + n2
z = 1.



Solution

(a) Since |ψI(t)⟩ is defined to evolve only due to the perturbation V , to obtain |ψI(t)⟩
explicitly, one needs to remove from |ψS(t)⟩ the evolution due to the free part H0 of the
Hamiltonian. This means that

|ψI(t)⟩ ≡ eiH0t/ℏ|ψS(t)⟩ .

One can check by direct substitution that |ψI(t)⟩ defined in this way indeed satisfies the
evolution equation (1).

(b) Using the form of the operators H0 and V (t) for the atom, and multiplying directly the
corresponding two-by-two matrices, we get

VI(t) = eiH0t/ℏV (t)e−iH0t/ℏ = exp{iωst

2
σz}gσx cos(ωt) exp{−i

ωst

2
σz} = g cos(ωt)

(
0 , eiωst

e−iωst, 0

)
.

This gives the following evolution equation for |ψI(t)⟩:

iℏ
d

dt
|ψI(t)⟩ = g cos(ωt)

(
0 , eiωst

e−iωst, 0

)
|ψI(t)⟩ .

This expression also shows that the operator VI(t) in general does not commute with VI(t′)
for t′ ̸= t.

(c) Analyzing obtained evolution equation for |ψI(t)⟩ we see that it contains the terms
oscillating as functions of time t with large frequency ω + ωs, and the terms oscillating with
small frequency ω − ωs ≡ ∆. Omitting the large-frequency terms we get:

iℏ
d

dt
|ψI(t)⟩ = VI(t)|ψI(t)⟩ = g

2

(
0 , ei(ωs−ω)t

e−i(ωs−ω)t, 0

)
|ψI(t)⟩ = g

2

(
0 , e−i∆t

ei∆t, 0

)
|ψI(t)⟩ .

(d) The matrix elements of the operator VI(t) in the “rotating wave” approximation derived
above oscillate as functions of time t with frequencies ±∆. From the form of this time
dependence shows that it can be removed by the following unitary transformation K of the
state |ψI(t)⟩:

|χ(t)⟩ = K|ψI(t)⟩ , K = exp{i∆t
2
σz} .

Using these equations, one sees directly that |χ(t)⟩ satisfies the following evolution equation:

iℏ
d

dt
|χ(t)⟩ = −ℏ∆

2
σz|χ(t)⟩+KVI(t)K

†|χ(t)⟩ = V ′
I |χ(t)⟩ , where V ′

I = −ℏ∆
2
σz +

g

2
σx .

(e) Evolution equation for |χ(t)⟩ with the time-independent VI can be solved immediately
in the standard general form:

|χ(t)⟩ = U(t)|χ(0)⟩ U(t) = e−iVI t/ℏ .



Using the properties of the Pauli σ matrices, we get the following expression for the evolution
operator U(t):

U(t) = e−iVI t/ℏ = exp{i(ℏ∆σz − gσx)t

2ℏ
} = cos(Ωt/2)+i

∆σz − (g/ℏ)σx
Ω

sin(Ωt/2) , Ω ≡ [∆2+(g/ℏ)2]1/2 .

From this, we get the time-dependent amplitudes of the state |χ(t)⟩:

a(t) = [cos(Ωt/2) + i
∆

Ω
sin(Ωt/2)]a0 − i

g

ℏΩ
sin(Ωt/2)b0 ,

b(t) = [cos(Ωt/2)− i
∆

Ω
sin(Ωt/2)]b0 − i

g

ℏΩ
sin(Ωt/2)a0 .

(f) If the atom is initially in the ground state, a0 = 0 , b0 = 1, the obtained amplitudes give
the following probability for the atom to stay in the initial state:

p0(t) = |b(t)|2 = cos2(Ωt/2) +
∆2

Ω2
sin2(Ωt/2) = 1− ∆2

Ω2
sin2(Ωt/2) = 1− p1(t) ,

where p1(t) = ∆2

Ω2 sin
2(Ωt/2) is the probability of the transition from the initial state



QUANTUM MECHANICS 2

Cyclic Permutation Protocol

Consider a system of two qubits (two-level systems) defined by the standard basis of states
{|↑↑⟩, |↓↑⟩, |↑↓⟩, |↓↓⟩}. The system has the following Hamiltonian:

H12 = J σ1 · σ2 ,

where σ1 = (σx
1 , σ

y
1 , σ

z
1) is the triplet of Pauli matrices acting on the first qubit, and σ2 is

the corresponding triplet acting on the second qubit.

(a)[3pt] Determine how the operators (1 + σz
1σ

z
2)/2 and (σx

1σ
x
2 + σy

1σ
y
2)/2 act on the states

of the standard basis of the system. For the second operator, it can be convenient to express
it through the “raising and lowering” operators σ± = (σx ± iσy)/2.

(b)[3pt] From the results of part (a) show that the action of the swap operator

P12 = (1 + σ1 · σ2) /2 , (1)

can be viewed as exchanging the states of qubits 1 and 2 in an arbitrary product state
|α⟩1 ⊗ |β⟩2 of the two-qubit system.

(c)[5pt] Denote the unitary evolution operator of the two-qubit system by

S12(t) = e−
i
ℏH12t. (2)

Consider an arbitrary initial product state |α⟩1 ⊗ |β⟩2. Find a value of the evolution time
t = T such that

S12(T )
(
|α⟩1 ⊗ |β⟩2

)
= eiγ|β⟩1 ⊗ |α⟩2, (3)

i.e., the evolution swaps the states of the two qubits up to a “global” phase γ. What is γ?

(d)[5pt] Now consider a system of three qubits. Let us denote by C123 the operator that
performs a cyclic permutation of the qubit states, meaning that for any product state

C123

(
|α⟩1 ⊗ |β⟩2 ⊗ |γ⟩3

)
= |β⟩1 ⊗ |γ⟩2 ⊗ |α⟩3. (4)

Determine the eigenvalues and eigenvectors of the operator C123.

(e)[4pt] Assume that the system evolves under a time-dependent Hamiltonian

H(t) = J1(t)σ1 · σ2 + J2(t)σ2 · σ3 + J3(t)σ3 · σ1 , (5)



where the time-dependent parameters Jj(t), j = 1, 2, 3, can be arbitrarily controlled. Provide
an example of a quantum protocol (specific choices of the functions Jj(t)) such that the time
evolution of the three-qubit system over a time T̃ implements the cyclic permutation operator
C123 up to some phase γ′.



Solution

(a) Since the σz matrix is diagonal in the {|↑⟩, |↓⟩} basis, direct evaluation shows that the
operator (1 + σz

1σ
z
2)/2 equals 1, when the two qubits are in the same states, i.e., in the

subspace {|↑↑⟩, |↓↓⟩}, and 0 - in the {|↓↑⟩, |↑↓⟩} subspace.

Next, expressing the σx and σy matrices through σ+ and σ−,

σx = σ+ + σ−, σy = i(σ− − σ+),

we see that
(σx

1σ
x
2 + σy

1σ
y
2)/2 = σ+

1 σ
−
2 + σ−

1 σ
+
2 .

This equation shown immediately that the operator (σx
1σ

x
2+σ

y
1σ

y
2)/2 equals 0 in the subspace

{|↑↑⟩, |↓↓⟩}, and exchanges the two basis states in the {|↓↑⟩, |↑↓⟩} subspace:

(1/2)(σx
1σ

x
2 + σy

1σ
y
2)|↓↑⟩ = |↑↓⟩ , (1/2)(σx

1σ
x
2 + σy

1σ
y
2)|↑↓⟩ = |↓↑⟩ .

(b) For the product states of the two qubits, exchange of the basis states in the {|↓↑⟩, |↑↓⟩}
subspace is equivalent to the exchange of the amplitudes of the two states. Therefore, the
properties of the product operators derived in part(a) mean that the operator P12 [which is
the sum of the two operators considered in (a)]:

P12 =
1

2
(I+ σ1 · σ2) , (6)

where I is the identity operator on the two-qubit Hilbert space, acts as the swap operator,
which exchanges the states of qubits 1 and 2:

P12

(
|α⟩1 ⊗ |β⟩2

)
= |β⟩1 ⊗ |α⟩2 . (7)

(c) From the definition of the swap operator we see that

σ1 · σ2 = 2P12 − I,

and therefore the Hamiltonian of the two-qubit system can be written as

H12 = J σ1 · σ2 = J (2P12 − I) .

The corresponding evolution operator then becomes

S12(t) = e−
i
ℏH12t = e−

i
ℏJ(2P12−I)t = e

iJt
ℏ e−

2iJt
ℏ P12 , (8)

where we used that I and P12 commute.



As can be checked directly, P12 satisfies the condition P 2
12 = I. This makes it possible to

expand the exponential like this:

e−
2iJt
ℏ P12 = cos

(
2Jt

ℏ

)
I− i sin

(
2Jt

ℏ

)
P12. (9)

Thus,

S12(t) = e
iJt
ℏ

(
cos

(
2Jt

ℏ

)
I− i sin

(
2Jt

ℏ

)
P12

)
. (10)

We now demand that
S12(T ) = P12 (up to a global phase), (11)

and see that this happens if

cos

(
2JT

ℏ

)
= 0, sin

(
2JT

ℏ

)
= 1,

which is achieved when
2JT

ℏ
=
π

2
⇒ T =

πℏ
4J
. (12)

Thus, the required time is

T =
πℏ
4J

, (13)

and at this time, the global phase is:

γ =
JT

ℏ
− π

2
= −π

4
. (14)

(d) Now consider a system of three qubits. The cyclic permutation operator C123:

C123

(
|α⟩1 ⊗ |β⟩2 ⊗ |γ⟩3

)
= |α⟩3 ⊗ |β⟩1 ⊗ |γ⟩2. (15)

cyclically shifts the amplitudes uj of a quantum state

|Ψ⟩ = u1|α⟩1 ⊗ |β⟩2 ⊗ |γ⟩3 + u2|γ⟩1 ⊗ |α⟩2 ⊗ |β⟩3 + u3|β⟩1 ⊗ |γ⟩2 ⊗ |α⟩3 .

so that (u1, u2, u3)
C123−→ (u2, u3, u1). This means that for a state to be the eigenstate of C123

with eigenvalue λ, the amplitudes need to satisfy the condition uj = λuj−1, i.e. one has:

uj ∝ λj, λ3 = 1 .

These conditions show that there are three eqigenvalues of C123:

λk = ei2πk/3, k = 0, 1, 2,



with the corresponding eigenstates given by the normalized amplitudes described above

u
(k)
j =

1√
3
(λk)

j .

(e) As usual, the cyclic permutation C123 can be represented as a sequence of pairwise
permutations, i.e., swap operators:

C123 = P23P12, (16)

where P12 swaps qubits 1 and 2, and P23 swaps qubits 2 and 3.

Indeed, acting sequentially:

• P12 exchanges qubits 1 and 2: |α⟩1 ⊗ |β⟩2 ⊗ |γ⟩3 → |β⟩1 ⊗ |α⟩2 ⊗ |γ⟩3,

• then P23 exchanges qubits 2 and 3: |β⟩1 ⊗ |α⟩2 ⊗ |γ⟩3 → |β⟩1 ⊗ |γ⟩2 ⊗ |α⟩3.

Renaming qubits as 1 → 3, 2 → 1, 3 → 2, this is precisely the cyclic permutation desired.

If one takes into account the results of part (c), this representation of the cyclic permutation
operator C123 means that this operator can be implemented if one applies two consecutive
pulses to the 3-qubit system:

• switching on J1(t) from 0 to constant J1 and back to 0 for the time interval πℏ/4J1 to
exchanges qubits 1 and 2;

• switching on J2(t) from 0 to constant J2 and back to 0 for the time interval πℏ/4J2 to
exchanges qubits 2 and 3.



QUANTUM MECHANICS 3

Heating in Optical Lattices due to Laser Intensity Noise

Consider an atom of mass M trapped in a one-dimensional optical lattice potential given by

V (x) = V0 sin
2(kx),

where V0 is the lattice depth, and k = 2π/λ is the wave number of the trapping laser of
wavelength λ. We will study atom states localized around just one minium of the potential
(say x = 0) using harmonic oscillator approximation.

(a)[2pt] Expand the lattice potential around the equilibrium position x = 0 up to the second
order in x. Find the harmonic oscillator frequency ωtrap in terms of V0, k, and M .

(b)[6pt] Suppose now that the lattice depth fluctuates with time as

V0(t) = V0[1 + ϵ(t)],

where ϵ(t) is a small dimensionless noise term with zero mean, ⟨ϵ(t)⟩ = 0. Within the first-
order perturbation theory, explain why the noise term V (t) ∝ ϵ(t) can induce transitions
only between harmonic oscillator levels different by two quanta, n → n ± 2. Calculate the
respective matrix elements ⟨n+ 2|V (t)|n⟩.
Hint: One possible way to do this is to express the perturbation term using ladder operators.

(c)[6pt] Using first-order time-dependent perturbation theory, write an expression for the
transition rate Γn→n±2 (transition probability per unit time) between harmonic oscillator lev-
els induced by such fluctuations. Further, assuming that t is much larger than the correlation
time of the noise τϵ, express your answer in terms of the power spectral density

⟨ϵ(t)ϵ(t′)⟩ = 1

2π

∫ ∞

−∞
Sϵ(ω)e

−iω(t−t′)dω ,

and show that the transition probabilities depend only on its value at frequency ω = 2ωtrap.

Hint: express the transition probability in terms of the noise autocorrelation ⟨ϵ(t)ϵ(t + τ)⟩
and assume that it falls off rapidly with increasing |τ | > τϵ.

(d)[6pt] Using the transition rates derived in (c), find the resulting expression for the rate
of change of the atom’s average energy ⟨E(t)⟩. Show that such noise leads to exponential
heating (the energy to grow exponentially with time).

Assume that initially the atom occupies level n with probability Pn and has average energy
⟨E⟩ =

∑
n ℏωtrap nPn = ℏωtrap⟨n⟩. Express the rate of the average energy change d⟨E⟩/dt

using the transition probabilities computed above.



Solution

(a) For small displacements |kx| ≪ 1 expand sin(kx) ≃ kx:

V (x) ≃ V0k
2x2 = 1

2
Mω2

trapx
2, =⇒ ωtrap =

√
2V0k

2

M
.

(b) Intensity noise is described by a real, zero-mean process ϵ(t):

V (t) = 1
2
Mω2

trapx
2 ϵ(t) =

ℏωtrap

4
(a+ a†)2ϵ(t).

Because (a + a†)2 = a2 + a†2 + 2n + 1, only a2 and a†2 connect the states with ∆n = ±2.
From ⟨n+ 1|a†|n⟩ = ⟨n|a|n+ 1⟩ =

√
n+ 1, the respective matrix elements are

⟨n+ 2|V (t)|n⟩ = 1

4
ℏωtrap⟨n+ 2|a†2|n⟩ϵ(t) = 1

4
ℏωtrap

√
(n+ 1)(n+ 2)ϵ(t) (1)

(c) Let T be the total observation time. The first-order transition probability from |n⟩ to
|n+ 2⟩ is

Pn→n+2(T ) =
1

ℏ2

∫ T

0

dt1

∫ T

0

dt2
〈
⟨n+ 2|V (t1)|n⟩⟨n|V (t2)|n+ 2⟩

〉
ei2ωtrap(t1−t2).

Using ⟨n+ 2|V (t)|n⟩ = ℏωtrap

4

√
(n+ 1)(n+ 2) ϵ(t) we pull out ℏ2ω2

trap(n+ 1)(n+ 2)/16 and
focus on the noise double integral

I(T ) ≡
∫ T

0

dt1

∫ T

0

dt2 ⟨ϵ(t1)ϵ(t2)⟩ ei2ωtrap(t1−t2).

Define the new variables

τ = t1 − t2, T = t1 + t2 (Jacobian 1
2
).

The domain 0 ≤ t1, t2 ≤ T maps to −T ≤ τ ≤ T and |τ | ≤ T ≤ 2T − |τ |:

I(T ) = 1
2

∫ T

−T
dτ

∫ 2T −|τ |

|τ |
dT Cϵ(τ) e

i2ωtrapτ ,

where Cϵ(τ) = ⟨ϵ(t)ϵ(t+ τ)⟩ (stationarity). Executing the T -integration gives the triangular
window

(
T − |τ |

)
:

I(T ) =

∫ T

−T

(
T − |τ |

)
Cϵ(τ)e

i2ωtrapτdτ.

If the noise correlation time τc≪T :

I(T ) ≈ T
∫ ∞

−∞
Cϵ(τ)e

i2ωtrapτdτ = T Sϵ(2ωtrap),



using the two-sided PSD definition. Therefore

Pn→n+2(T ) ≈ T
ω2

trap

16
(n+ 1)(n+ 2)Sϵ(2ωtrap).

yielding the rate

Γn→n+2 =
ω2

trap

16
(n+ 1)(n+ 2)Sϵ(2ωtrap) .

Analogously, Γn→n−2 =
ω2

trap
16
n(n− 1)Sϵ(2ωtrap).

Note : Here we have assumed that T is much shorter than the time-scale over which
level populations vary signifcantly but much larger than the correlation time of the noise.
This separation of time scales is fundamental to many stochastic processes (quantum or not)
in physics.

(d) Each upward jump delivers an energy gain of 2ℏωtrap while a downward jump removes
the same amount. Weighting these increments by their respective rates gives the net energy
flow:

d⟨E⟩
dt

= 2ℏωtrap

∑
n

[
Γn→n+2Pn − Γn→n−2Pn

]
.

Insert the explicit rates from part (c). Using
∑

n Pn = 1 and
∑

n nPn = ⟨n⟩:

d⟨E⟩
dt

=
ω2

trap

4
Sϵ(2ωtrap) ⟨E⟩ .

Solving the differential equation gives the exponential heating law

⟨E(t)⟩ = ⟨E(0)⟩ eγt , γ =
ω2

trap

4
Sϵ(2ωtrap).

Note : This trap-induced heating is common in all laser based traps for cold atoms. It can
used as a tool, for example to determine trap frequency by adding a perturbation, scanning
its frequency and looking for loss peaks. For ultracold atoms, degenerate gases, atomic clocks
and quantum computing, it often crucial to heavily suppress laser intensity noise at 2ωtrap

by various techniques. Also, note that this entire calculation can actually be done classically
using Ehrnfest’s theorem.



STATISTICAL MECHANICS 1

Classical Ising model

Consider a system of N classical binary spins Si ∈ {+1,−1}, where each spin interacts
equally with every other spin. The Hamiltonian for this all-to-all interaction Ising model in
the presence of an external magnetic field h is given by:

H = − J

N

∑
i<j

SiSj − h
N∑
i=1

Si. (1)

The factor of 1/N in the interaction term ensures that the energy per particle remains finite
as N → ∞, which is crucial for a well-defined thermodynamic limit.

(a)[3pt] Calculate the number of states (statistical weight) that correspond to the total
magnetization M .

(b)[3pt] Write an expresion for the system’s partition function in terms of summation over
the values of M , the number of spins N , the inverse temperature β = 1/(kBT ), and the spin
interaction strenght J .

(c)[4pt] Take the thermodynamic limit (N large) and express the partition function as an
integral over the average magnetization m =M/N ,

ZN =

∫ 1

−1

dm e−Nβf(m) (find function f(m)).

(d)[5pt] Derive the self-consistent equation for m =M/N determining the most statistically
probable state of the system.

(e)[5pt] For which temperature T at which magnetization m can spontaneously become
nonzero, m ̸= 0 ?

Hint: Stirling’s approximation for large n gives lnn! ≈ n lnn− n



Solution

(a) Introducing the total magnetization M =
∑N

i=1 Si, we can rewrite the Hamiltonian.
Note that M2 = (

∑N
i=1 Si)

2 =
∑N

i=1 S
2
i +2

∑
i<j SiSj = N +2

∑
i<j SiSj. Thus,

∑
i<j SiSj =

1
2
(M2 −N). Substituting this into the Hamiltonian, we get:

H = − J

2N
(M2 −N)− hM = − J

2N
M2 +

J

2
− hM. (2)

The total magnetization M can take values from −N to N in steps of 2. Let W (M,N) be
the number of configurations with a total magnetization M . This is given by the number of
ways to choose (N +M)/2 spins to be +1 (and the remaining (N −M)/2 to be −1):

W (M,N) =

(
N

(N +M)/2

)
=

N !

[(N +M)/2]![(N −M)/2]!
. (3)

(b) The partition function ZN at inverse temperature β = 1/(kBT ) is the sum over all 2N

spin configurations:

ZN =
∑
{Si}

e−βH({Si}) =
∑
{Si}

exp

(
β

(
J

2N
M2 − J

2
+ hM

))
. (4)

Since the Hamiltonian depends only on the total magnetization M , we can group the terms
by the value of M . The partition function can then be written as a sum over possible values
of M :

ZN =
N∑

M=−N,M both even or odd

W (M,N) exp

(
β

(
J

2N
M2 − J

2
+ hM

))
. (5)

(c) Using the Stirling formula, we have

lnW (M,N) ≈ N lnN −N −
(
N +M

2
ln
N +M

2
− N +M

2

)
−
(
N −M

2
ln
N −M

2
− N −M

2

)
(6)

and

lnW (M,N) ≈ N ln 2− N +M

2
ln

(
1 +m

2

)
− N −M

2
ln

(
1−m

2

)
, (7)



where m =M/N is the magnetization per spin.

Together with the exponent in the Boltzmann factor

−βH(M) = −β
(
− J

2N
M2 +

J

2
− hM

)
=
βJ

2
m2N − βJ

2
+ βhmN. (8)

The partition function is

ZN =

∫ 1

−1

dm e−Nβf(m), (9)

where

βf(m) = − ln 2 +
1 +m

2
ln

(
1 +m

2

)
+

1−m

2
ln

(
1−m

2

)
− βJ

2
m2 − βhm. (10)

(d) To obtain the highest Boltzmann weight, we maximize the function(divided by N):

g(m) ≡ −βf(m) = ln 2− 1 +m

2
ln

(
1 +m

2

)
− 1−m

2
ln

(
1−m

2

)
+
βJ

2
m2 + βhm.(11)

We find the maximum by setting the derivative with respect to m to zero:

dg

dm
= = 0. (12)

This gives

1

2
ln

(
1−m

1 +m

)
+ βJm+ βh = 0,

ln

(
1−m

1 +m

)
= −2β(Jm+ h),

1−m

1 +m
= e−2β(Jm+h). (13)

Alternatively, by considering the derivative of lnW (M,N) − βH(M) directly with respect
to M and setting it to zero, and then taking the limit N → ∞, we arrive at the same
self-consistent equation for the magnetization per spin m:

m = tanh(β(Jm+ h)). (14)



The solution m∗ gives the m of the configuration with highest Boltzmann weight.

This state gives the dominant contribution to the statistical sum since the statistical prob-
ability quickly diminishes away from that point, increasingly so in the thermodynamic limit
(N → ∞). It is used in the so-called saddle-point approximation, in which the entire sum
is approximated by this largest contribution which maximizes the product of the number of
configurations W (M,N) and the Boltzmann factor exp(−βH) is maximized. Equivalently,
we can maximize lnW (M,N)− βH(M).

(e) For a non-zero spontaneous magnetization (h = 0, m∗ ̸= 0), the self-consistent equation
becomes:

m = tanh(βJm). (15)

For small m, we can use the Taylor expansion of tanh(x) ≈ x− x3

3
+ ...:

m ≈ βJm− (βJm)3

3
,

m(1 − βJ +
(βJ)3m2

3
) ≈ 0. (16)

A non-zero solution (m ̸= 0) exists when:

1− βJ < 0 =⇒ βJ > 1 =⇒ J

kBT
> 1 =⇒ T < J/kB. (17)

The temperature Tc = J/kB marks the critical temperature for this mean-field model.



STATISTICAL MECHANICS 2

Chemical equilibrium

A long cyllindrical tube of length L and radius R ≪ L is held vertically under the influence
of earth’s gravity with acceleration g. The tube is first completely evacuated and then filled
with isotopically pure 40Ar gas to a pressure of roughly 10−8 Pa which equilibrates with the
walls of the tube. The tube is held at a constant temperature of 300 K. The argon atoms
can adsorb onto binding sites on the tube walls, with density of N sites per unit area, with
binding energy (−ϵ) compared to a zero kinetic energy state in the adjacent gas. For this
problem, we will neglect motion of the surface-bound Ar atoms.

(a)[6pt] Calculate the z-dependent density of Ar atoms ρAr(z) relative to the equilibrated
density at the bottom of the tube ρAr(z = 0).

(b)[6pt] Calculate the fraction of surface binding sites occupied as a function of z. Again
express your answer in terms of the equilibrated gas density at the bottom of the tube
ρAr(z = 0).

After the Ar has equilibrated with the walls of the tube, a small amount of isotopically pure
fluorine gas 19F2 (molecular mass ≈ 38) is introduced into the tube, with density much less
than the argon density. The flourine can also absorb onto the walls with binding energy −ϵ
and also react with Ar to form ArF molecules via the reaction

2Ar + F2 ⇋ 2ArF . (1)

(c)[8pt] Derive an expression for ρArF(z) in terms of the new equilibrated densities of Ar
and F2 at the bottom of the tube ρAr(z = 0) and ρF2(z = 0).



Solution

We can first determine if we are in the classical ideal gas limit using the information given.
If an ideal gas, the number density is related to the pressure via ρ = p/kBT , which for
300 K and 10−6 Pa gives a number density of ρ = 2.4 × 1012 m−3. The thermal de Broglie
wavelength for Ar at 300 K is

λAr =
h√

2πmArkBT
≈ 1.6× 10−11 m, (2)

so the quantum degeneracy parameter ρλ3Ar ≈ 10−20 and we are very much in the classical
limit. One can also just reason this out without calculating by knowing that atmospheric
pressure is roughly 105 Pa such that 10−8 Pa corresponds to ultrahigh vacuum and a very
dilute gas.

(a) There are several ways to get ρ(z). Here are a few.

Method 1: Include gravitational potential into constant chemical potential.

The chemical potential of an ideal gas in the absence of an external potential is given by
µ = kBT ln(ρλ3). The gravitational potential mArgz will add to this. The total chemical
potential throughout the gas must be constant such that

µAr = kBT ln
(
ρAr(0)λ

3
Ar

)
= kBT ln

(
ρAr(z)λ

3
Ar

)
+mArgz

⇒ ln

(
ρAr(z)

ρAr(0)

)
= −βmArgz

ρAr(z) = ρAr(0)e
−βmArgz , (3)

with β = 1/kBT .

Method 2: Reduced distribution function

The Hamiltonian for the system is

H =
N∑
i=1

p2i
2m

+mg

N∑
i=1

zi . (4)

The full distribution function for all the particles is proportional to exp[−βH(rN , pN)]. The
z-dependent density ρ(z), a reduced distribution function, can be related to full distribution



via partial integration, viz.

πR2

∫ L

0

dz1 ρ(z1) = N × 1

= N

∫
drN

∫
dpNe−βH∫

drN
∫
dpNe−βH

= N

(
1∫ L

0
dz1e−βmgz1

)∫ L

0

dz1 e
−mgz1

⇒ ρ(z) = (const.)e−βmgz

⇒ ρAr(z) = ρAr(z = 0)e−βmArgz . (5)

Note that one can also derive this formula for ρ(z) from the condition of hydrostatic equi-
librium −∇p+ ρg = 0 and the ideal gas law. However, in this case of ultrahigh vacuum the
mean free path of the Ar atoms is very large, on the order of 106 m. In principle the idea
of hydrostatic equilibrium can still be valid if the (unstated) dimensions of the container are
much larger than the mean free path, but the container would have to be very large for this
to make sense. Since the problem says to use a constant gravitational acceleration g it is
implicit that the dimensions of the container are much smaller than the radius of the earth
(∼ 107 m), and thus also much smaller than the mean free path. In this “molecular flow
regime,” common to high vacuum systems, the Ar atoms are not colliding with each other
and only collide with the chamber walls, such that the fluid mechanics concept of hydrostatic
equilibrium is nonsensical.

(b) At any position z, the problem can be solved considering each binding site as a grand
canonical system in equilibrium with the gas with chemical potential µ(z). There are only
two states for the binding site, occupied with n = 1 and total energy ε(z), and empty with
n = 0 and energy 0. The grand partition function is then

Ξ =
∑
v

e−β(Ev−µnv) = 1 + e−β[ε(z)−µ(z)] . (6)

The coverage fraction is then just given by the probability of occupancy

Θ(z) = p1(z) =
e−β[ε(z)−µ(z)]

Ξ

⇒ Θ(z) =
1

eβ[ε(z)−µ(z)] + 1
. (7)

The subtlety of the problem comes in how to think about the z-dependence of the bound-
state energy and the chemical potential. If one thinks about the problem globally, over the
whole tube, then it is natural to take the gas chemical potential as a constant µ(z) = µ(0) =



kBT ln [ρAr(0)λ
3
Ar], but then we must consider that a binding site at elevation z has mArgz

higher energy than a binding site at z = 0, such that ε(z) = −ϵ+mArgz and

Θ(z) =
ρAr(0)λ

3
Ar

eβ[−ϵ+mArgz] + ρAr(0)λ3Ar
(8)

If one instead thinks locally, one can consider binding sites with energy ε = −ϵ at a height
z to be in chemical equilibrium with the local gas at the same gravitational potential. The
local gas density ρAr(z) = ρAr(0) exp [−βmArgz] and local chemical potential is µ(z) =

kBT ln [ρAr(z)λ
3
Ar]. Inserting these parameters into equation (7) gives the same result as (8).

(c) c) The law of mass action for gas-phase reactions is

r∏
i=1

ρνii =
r∏

i=1

( qi
V

)νi
= K(T ) , (9)

where r is the number of species, the qi are the single-molecule partition functions, the νi are
the reaction coefficients, and V is the container volume. Critically, the equilibrium constant
K only depends on temperature, so it is independent of z. Taking the reaction coefficients
to be positive for the reactants (species on right-hand side of equation (1)) and negative for
the products (species on the left-hand side of equation (1)), we have

ρ2ArρF2

ρ2ArF
= K0 . (10)

Regardless of how much F2 sticks to the walls, we still must have chemical equilibrium
throughout the gas, such that the F2 density will also have the z dependence

ρF2(z) = ρF2(0)e
−βmF2

gz , (11)

and combining (10) and (11), we arrive at the result

ρArF =
1√
K0

ρAr(0) [ρF2(0)]
1/2 exp

[
−β
(
mAr +

mF2

2

)
gz
]

(12)

One can also use the opposite sign convention for the reaction coefficients, in which case
K0 → 1/K0.



STATISTICAL MECHANICS 3

Canonical and grand-canonical ensemble for a system of fermions with an energy gap

This problems discusses the subtleties of thermodynamic limit in systems with energy gap,
which manifest themselves experimentally, e.g., through “parity effects” in superconductors.

Consider a system of two degenerate energy levels, one with energy 0 and the other with
energy ∆ > 0. Each level is N0-fold degenerate. The system is in equilibrium at temperature
T and is occupied by N non-interacting and effectively spinless fermions.

(a)[4pt] Assume that both Ns are large, N,N0 ≫ 1 so that the system can be described
within the grand canonical ensemble characterized by the chemical potential µ and concen-
tration of particles in the system, n = N/N0. Write down the equation that determines µ.
Solve this equation in the case N = N0, and find explicitly µ and the occupation probabilities
f and g of the upper and lower energy levels, respectively. Simplify expression for f at low
temperatures T ≪ ∆.

(b)[4pt] TakeN > N0. Find µ from the equation obtained in part(a) in the low- temperature
limit, T ≪ ∆.

(c)[4pt] Rederive the result from part (b) in a simpler fashion, using the thermodynamic
definition of the chemical potential µ and calculating directly the entropy of the fermions in
the upper energy level.

(d)[6pt] From now on, take N = N0. Describe the system using the canonical ensemble.
Write down the partition function and evaluate it to find the occupation probabilities f and
g in the two limits:
(1) thermodynamic limit N → ∞, while keeping temperature constant;
(2) low-temperature limit T → 0, assuming N large but constant.
Hint: You might need to use Stirling’s approximation N ! ≃ (N/e)N , for N ≫ 1.

(e)[2pt] Compare the results for f at low temperatures obtained in the grand-canonical
ensemble [part (a)] and canonical ensemble [part (d2)]. Derive the condition of applicability
of the grand canonical ensemble to the system with fixed number of particles N .



Solution

(a) In the grand canonical ensemble, for the system considered, the self-consistency condition
for µ is:

N =
N0

e−µ/kBT + 1
+

N0

e(∆−µ)/kBT + 1
.

Introducing z = e−µ/kBT one can transform this relation into a quadratic equation for z:

(z + 1)(λz + 1) =
1

n
(2 + (1 + λ)z) ,

and
λz2 + (1 + λ)

n− 1

n
z − 2− n

n
= 0 ,

where λ ≡ e∆/kBT . Since z > 0, one should keep only the plus sign in the quadratic equation
formula:

z = −b+
(
b2 +

2− n

nλ

)1/2
, b ≡ 1 + λ

2λ

n− 1

n
.

This relation determines µ for any concentration n. For n = 1 (N = N0) it gives:

z = 1/
√
λ ⇒ e−µ/kBT = e−∆/2kBT , i.e., µ = ∆/2.

With this value of the chemical potential, the occupation probabilities f and g of the upper
and lower energy levels are:

f =
1

e∆/2kBT + 1
, g =

1

1 + e−∆/2kBT
.

At low temperatures T ≪ ∆ the expression for f simplifies to

f = e−∆/2kBT .

(b) For N > N0, n > 1 and the factor b in the equation for µ derived in part (a) is positive.
In this case, one can use Taylor expansion of the square root in this equation to the first
order in small factor 1/λ to obtain:

z = −b+ b
(
1 +

2− n

2b2nλ

)
=

2− n

2bnλ
=

2− n

(1 + λ)(n− 1)

≃ 1

λ

2− n

n− 1
.

This gives for µ:

µ = −kBT ln z = ∆− kBT ln
2− n

n− 1
.

The first term in this equation has a direct physics sense. For N > N0 and low temperatures,
the added particles with dominant probability go only into the upper level with energy ∆,
since the lower level is completely filled.



(c) The second term in the equation for µ also has a direct physics sense. The standard
thermodynamic definition of the chemical potential is:

µ =
( ∂F
∂N

)
T
=
(∂(U − TS)

∂N

)
T
=
(∂(∆M − TS(M)

∂M

)
T
,

where M is the number of particles in the upper level, and we used the notion that up to
the exponentially small corrections, for N > N0 and T ≪ ∆, the added particles go into
the upper energy level. The entropy S(M) of M particles in this level is determined by the
number of distinct ways in which the particles can be distributed over the N0 degenerate
states:

S(M) = kBln
N0!

M !(N0 −M)!
.

From this,
∂S(M)

∂M
= S(M + 1)− S(M) = kB ln

N0 −M

M
,

and we obtain for the chemical potential:

µ = ∆− kBT ln
N0 −M

M

Since the lower level is completely filled, M = N−N0, and we see that this expression indeed
coincides with the equation for µ obtained in (b).

(d) In the canonical ensemble, the total energy of the system is EM = M∆, and therefore
the partition function Z, can be expressed in terms of the number M of the particles in the
upper energy level. Counting the number of way of taking M particles from the lower N
levels and distributing them over the upper N levels, one finds

Z =
N∑

M=0

[ N !

M !(N −M)!

]2
e−M∆/kBT .

(1) To find the occupation probabilities in the thermodynamic limit N → ∞, we notice
that the sum over M in Z is dominated by the largest term, which can be found by using
Stirling’s approximation for the factorials in the sum. In this way, one finds that the largest
term corresponds to

M =
N

e∆/2kBT + 1
,

i.e.,

f =M/N =
1

e∆/2kBT + 1
, g = (N −M)/N =

1

1 + e−∆/2kBT
,

in agreement with the results of the grand canonical ensemble.

(2) In the low-temperature limit T → 0, however, the partition function Z is dominated by
the first two terms in the sum over M :

Z ≃ 1 +Ne−∆/kBT ,



so that
f = e−∆/kBT , g = 1− e−∆/kBT .

We see that first, as should be, in the thermodynamic limit, the occupation probabilities are
independent of the ensemble used. There are the same in the canonical and grand canonical
ensembles. In the low-temperature limit, however,the occupation probabilities are different
from the ones in the grand canonical ensemble even for very large Ns.

(e) Comparing the low-temperature results for f in part (a) (and, equivalently, in the ther-
modynamic limit (d1) of the canonical ensemble) we see that for the system with fixed
number of particles N , the grand canonical ensemble with its Fermi distribution can be used
to describe the occupation probabilities only at not-too-low temperatures, when the number
of excited particles is large:

Ne−∆/kBT ≫ 1 , i.e., kBT ≫ ∆/ lnN .

Although formally this condition is satisfied in the thermodynamic limit N → ∞ for all
temperatures, logarithm is a very slow function, and the regime of the small number of
excitations can be important experimentally, e.g., in samples of superconductors which are
“macroscopic” in all other respects.
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